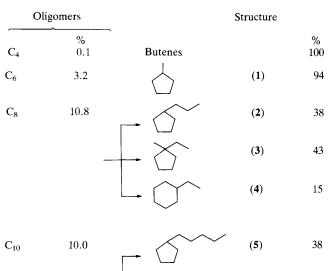
Unusual, CO Assisted Cyclo-oligomerization Reactions of Ethylene: Formation of Cyclopentane and Cyclohexane Derivatives by Ytterbium Ziegler–Natta Catalysts


Wilhelm Keim,*a Zhongxin Chen,^b and Zhiquan Shen^b

^a Institute of Technical Chemistry and Petrol Chemistry, Technical University Aachen, D-5100 Aachen, F.R.G. ^b Department of Chemistry, Zhejiang University, Hangzhou, P. R. China

A new oligomerization of ethene to alkylcyclopentanes and/or alkylcyclohexanes using YbCl₃/AlEtCl₂ or ZrCl₄/AlEtCl₂ Ziegler–Natta type catalysts is described in which addition of carbon monoxide is essential.

Polyethylenes and α -alkenes are products of immense practical importance. There have been only scattered reports about unusual oligomerization reactions of ethene which are not in agreement with normal growth reactions. Co-workers of the Union Carbide Corporation have described the trimerization of ethene to hex-1-ene,¹ and Gragin has reported the synthesis of aromatics from ethene.² Also noteworthy in this connection is the work by Grubbs, who

Table 1. Oligomerization of ethene (AlEtCl₂: YbCl₃ = 40:1)

(6) 22 (7) 20 (8) 13

So far unidentified

Table 2. Impact of changes in the Al/Yb ratio.

75.8

C12

reported the formation of cyclobutane starting from nickelacyclopentane.³ To our knowledge there are no reports of the conversion of ethene to cyclic alkanes in the literature.

The reaction of mixtures of ethene and carbon monoxide $(CO:C_2H_4 = 1:8-10)$ with the Ziegler-Natta catalyst YbCl₂/AlEtCl₂ in n-heptane at 120 °C yielded a wide range of C_4 to C_{30+} oligomers. The turnover numbers reached about 900 mol C₂H₄/mol Yb. Table 1 lists the C₄--C₁₀ oligomers identified so far. Compounds (2), (3), (5), (6), and (7) were separated by preparative GC and characterized by mass, IR, and NMR spectroscopy. The ¹H and ¹³C NMR spectra of (1), (4), and (8) are identical with commercial samples. As is obvious from the percentage numbers in Table 1, there are many unidentified products left, and the unknown C₁₂₊ fraction amounts to 75.8%. However, from the position of the GC peaks and from the mass spectral data it can be concluded that the reaction pattern observed for the C_8/C_{10} oligomers is continued for every fraction of oligomers possessing the same carbon number, and the data are in agreement with n-alkylcyclopentanes, n-alkylcyclohexanes, and disubstituted cyclopentanes.

The amounts of n-alkylcyclopentanes and n-alkylcyclohexanes depend strongly on the Al/Yb ratio applied (Table 2). When $AlEtCl_2: YbCl_3 = 10$, only n-alkylcyclopentanes are found. With ratios greater than 60, mainly n-alkylcyclohexanes are observed. It should be emphasized that the catalyst $YbCl_3/AlEtCl_2$ under the conditions used for the oligomerization does not convert propylcyclopentane (2) to the corresponding cyclohexane.

If the system YbCl₃/AlEtCl₂ is applied in the absence of carbon monoxide only linear alkenes in the C_4 — C_{30+} range are formed. This underlines the remarkable impact of carbon monoxide. Normally carbon monoxide is used in Ziegler–Natta catalysis to deactivate the system. In preliminary experiments $ZrCl_4$ /AlEtCl₂ also produced cyclic oligomers.

Interestingly, the reaction of ethene with YbCl₃/Et₂AlCl instead of YbCl₃/EtAlCl₂ yielded only highly linear α -alkenes. The addition of CO reduced the activity drastically.⁴

It would be too speculative to propose a reaction mechanism discussing the function of carbon monoxide. It can be assumed that CO plays a role as ligand *via* labilization.⁵ In addition, the products obtained formally can be derived much more easily from a metallacycle than from the Cossee–Arlman

	AlEtCl ₂ /YbCl ₃		10	20	40	50	60	AlEtCl ₂
C_6	Methylcyclopentane %	(1)	71	92	94	100	100	No products observed
C_8	Methylethylcyclopentane	(3)	21	8	43	22	23	
-	Propylcyclopentane	(2)	58	71	38	40	0	
	Ethylcyclohexane	(4)	0	12	15	38	77	
C_{10}	Methylbutylcyclopentane	(6)	19	19	22	25	33	
	Ethylpropylcyclopentane	(7)	19	17	20	20	22	
	Pentylcyclopentane	(5)	45	47	38	24	0	
	Butylcyclohexane	(8)	0	6	13	31	45	

mechanism,⁶ which may support a metallacyclopentane pathway.

Received, 4th September 1989; Com. 9/03764K

References

- 1 J. R. Briggs, J. Chem. Soc., Chem. Commun., 1989, 674.
- 2 O. V. Bragin, T. V. Vasina, A. V. Preobrazenkuj, P. Birke, S.
- Engels, and M. Wilde, Z. Anorg. Allg. Chem., 1981, 472, 173. 3 R. H. Grubbs and A. Miyashita, J. Am. Chem. Soc., 1978, 100, 7416.
- 4 Zhongxin Chen, to be published.
- 5 J. Powell, M. R. Gregg, and J. F. Sawyer, J. Chem. Soc., Chem. Commun., 1984, 1149; J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, in 'Principles and Applications of Organotransition Metal Chemistry,' University Science Books, Mill Valley, 1987, p. 253.
- S. J. McLain, J. Sancho, and R. R. Schrock, J. Am. Chem. Soc., 1980, 102, 6510; G. K. Yang and R. G. Bergman, Organometallics, 1985, 4, 129; R. J. McKinney, J. Chem. Soc., Chem. Commun., 1980, 490; L. Clawson, J. Soto, S. L. Buchwald, M. L. Steigerwald, and R. H. Grubbs, J. Am. Chem. Soc., 1985, 107, 3377.