Tentacled Iron Sandwiches: Peralkylation of Fe^{ll}Cp(C₆Me₆)+PF₆- (Cp = C₅H₅)

Françoise Moulines and Didier Astruc

Laboratoire de Chimie Organique et Organometallique, U.A. C.N.R.S. No 35, Universite de Bordeaux I, 351 cows de la Liberation, 33405 Talence Cedex, France

The title complex reacts with excess KOH and alkyl iodides RI [R = C₂H₅, C₅H₁₁, (CH₂)₆OMe] in dimethoxyethane (DME) under mild conditions to give specifically the hexa-alkylated complexes $[FeCpC₆(CH₂R)₆] + PF₆- (Cp = C₅H₅).$

There is an increased interest in organic, inorganic, and organometallic materials which stack segregatively such as liquid crystals¹ and Langmuir-Blodgett films.² Along this line, we have developed the research of tentacled iron sandwich complexes. The principle is based on the enhanced acidity of benzylic protons of aromatics co-ordinated in an hexahapto fashion to an electron-withdrawing transition metal moiety. First demonstrated by Trahanovsky and Card with $Cr(CO)₃,^{3,4}$ it has been used with $FeCp⁺$ for a number of mono functionalisations (equation 1) *.5* liquid crystals¹ and Langmuir–Blodgett films.² Along this line,
we have developed the research of tentacled iron sandwich
complexes. The principle is based on the enhanced acidity of
benzylic protons of aromatics co-o

$$
\text{[FeCp}(\eta^6\text{-PhMe})]^+ \xrightarrow{\text{t-BuOK}} \text{[FeCp}(\eta^5\text{-Ph}(\text{=CH}_2))] \xrightarrow{\text{RX}} \text{[FeCp}(\eta^6\text{-PhCH}_2\text{R})]^+ \quad (1)
$$

In the case of $[FeCp(C_6Me_6)]$ + PF_6^- , (1),⁶ excess of t-BuOK and Me1 were shown to give the hexa-alkylation product (equation *2).7*

$$
\frac{\text{[FeCp(C6Me6)]+PF6-\frac{t-BuOK}{MeI}}{\text{[FeCpC6(CH2Me)6]+PF6-} (2)}
$$

This reaction can be extended to benzyl and allyl bromides⁷ but not to ordinary alkyl halides because dehydrohalogenation (equation **3)** takes place faster than the organometallic reaction $[(1)PF_6$ ⁻ is recovered unchanged].

Scheme 1; Peralkylation reactions: i, KOH, RI, DME.

$$
RCH2CH2X + t-BuOK \rightarrow t-BuOH + KX + RCH=CH2 (3)
$$

(X = Cl, Br, I)

This was a severe limit of the reaction of equation **(2)** and we have therefore investigated the means to overcome this problem.

We find that using conditions of pseudo phase-transfer catalysis, the organometallic reaction proceeds to completion. Thus (1) PF_6^- was reacted with excess KOH and RI in dimethoxyethane (DME) at $40-80$ °C for 1-2 days, which $(CH₂)₆OMe(4)$ (Scheme 1), after chromatography on an alumina column to separate unreacted RI. gave pure $[FeCpC_6(CH_2R)_6]+PF_6^-$, $R = Et(2)$, n-C₅H₁₁(3),

The new complexes are soluble in pentane [except (2)]. They were characterised by elemental analysis, \dagger ¹H and ¹³C

n.m.r. spectroscopy. \ddagger The 63 MHz ¹³C-{¹H} n.m.r. spectra were found necessary to monitor the reactions and ensure their completion. Since photolysis of (2) — (4) with visible light splits the sandwich complexes, access to the new free aromatics is allowed.7 Moreover, this method also works well for the hexa-allylation reaction. Reaction of $(1)PF_6$ ⁻ with KOH and allylbromide in DME for 1 day at $40\degree C$ gave the pure known^{7c} hexabutenylbenzene complex $[FeCpC₆(CH₂CH₂CH=CH₂)₆]$ ⁺PF₆- in 80% yield on a mmol scale after work up and chromatography. Thus a cheap and efficient route to hexa-alkyl and hexafunctional benzene complexes is open. Extensions and physical studies are underway.

We thank the 'Ministère de la Recherche et de l'Enseignement Supérieur' (M.R.E.S.) for financial support.

Received, 23rd September 1988; Com. 8103730B

References

- D. W. Bruce, E. Lalinde, P. Styring, D. A. Dunmur, and P. M. Maitlis, J. *Chem.* SOC., *Chem. Commun.,* 1986,581; U. T. Mueller Westerhoff, A. Nazzal, R. J. Cox, and A,-M. Giroud, *Mol. Cryst. Liq. Cryst.,* 1980, 56, 249; C. Piechocki, J. Simon, A. Skoulios, D. Guillon, and P. Weber, J. *Am. Chem. SOC.,* 1982, 104, 5245.
- Review: M. Suji, J. *Molecular Electronics,* 1985, **1,** 3; M. J. Cook, M. F. Daniel, **A.** J. Dunn, A. A. Gold, and A. J. Thomson, J. *Chem.* SOC., *Chem. Commun.,* 1986, 863; A. W. Snow and N. L. Jarvis, J. *Am. Chem. Sac.,* 1984, 106, 4706; J. R. Fryer, R. A. Hann, and B. L. Eyres, *Nature,* 1985,313,382; M. P. Andrews, C. Blakburn, J. F. McAleer, and D. Patel, J. *Chem. Soc., Chem. Commun.,* 1987, 1122; K. Hoshino and T. Saji, *Chem. Lett.,* 1987, 1439; **S.** Sakai, H. Kozawa, **Y.** Yoshinaga, K. Kosugi, and **S.** Fukuzawa, *J. Chem.* SOC., *Chem. Commun.,* 1988, 663.
- 3 W. S. Trahanovsky and R. J. Card, *J. Am. Chem. Soc.*, 1972, 94, 2897.
- G. Simonneaux and G. Jaouen, *Tetrahedron,* 1979, 35, 2249; A. Boudeville and H. des Abbayes, *Tetrahedron Lett.,* 1975, 2727.
- *C.* C. Lee, B. R. Steele, K. J. Demchuk, and R. G. Sutherland, *Can.* J. *Chem.,* 1979,57,946; *J. Organomet. Chem.,* 1979,81,411; D. Astruc, E. Roman, J.-R. Hamon, and P. Batail, J. *Am. Chem. SOC.,* 1979,101,2240; D. Astruc, J.-R. Hamon, E. Roman, and P. Michaud, *ibid.,* 1981, 103, 7502.
- 1. U. Khand, P. L. Pauson, and W. E. Watts, J. *Chem. SOC.,* 1968, 2257.
- (a) J.-R. Hamon, J.-Y. Saillard, A. Le Beuze, M. J. McGlinchey, and D. Astruc, J. *Am. Chem.* SOC., 1982,104,7549; (b) D. Astruc, 'The Chemistry of the Metal-Carbon Bond,' eds. **S.** Patai and F. P. Hartley, Wiley 1987, Vol. IV Chap. 7, 625; (c) F. Moulines and D. Astruc. *Angew. Chem., Int. Ed. Engl.,* 1988, 27, 1347.

 \ddagger (2): yellow crystals, 70% yield; ¹H n.m.r. (CD₃COCD₃; 200 MHz) AA'BB'C₃ Spin system δ 1.06, 1.10, 1.14 (t, 18H, -CH₂-CH₃), 1.62, 1.66, 1.68, 1.70, 1.74 (m, sym., 12H, $-CH_2CH_2-CH_3$), 2.85, 2.87, 2.89, 2.91, 2.93 (m, sym., 12H, Aryl-CH₂-), 4.84 (s, 5H, C₅H₅). ¹³C-{¹H} n.m.r. (CD₃COCD₃; 22.63 MHz) δ 15.04 (-CH₂-CH₃), 25.83 ($-CH_2-CH_3$), 33.48 (Aryl- CH_2), 78.74 (C_5H_5), 104.42 (C_6R_6). **(4):** yellow resin, 60% yield; ¹H n.m.r. $(CD_3CN$; 250 MHz) 1.59 , 1.75 [d, 60H, $-(CH_2)_5$ ⁻], 3.00 (s, broad, 12H, Aryl-CH₂-), 3.44 (s, 18H, $-OCH_3$), 3.53 (12H, $-CH_2-O-$), 4.85 (s, 5H, C_5H_5). ¹³C-{¹H} n.m.r. (CD₃CN; 62.89 MHz) δ 27.02, 29.9, 30.57, 31.20, 31.72, 32.6 (C_5H_5) , 104.49 (C_6R_6) . $[Aryl-(CH₂)₆-], 58.88 (-O-CH₃), 73.46 (-CH₂-O-Me), 78.88$

(3): yellow resin with arborescence; ${}^{1}H$ n.m.r. (CD₃CN; 250 MHz) *6* 0.91, 0.94 (18H: -CH3), 1.36, 1.55 [d, broad, 48H, *-(CH&],* 2.81 **(s,** broad, 12H, Aryl CH2), 4.61 **(s,** SH, CsHs). 13C-{lH}n.m.r. (CD3CN; 62.9 MHz) 14.56 *(-CH3),* 23.4, 30.78, 31.55, 32.17, 32.51 $[(-CH₂-)₅], 78.66 (C₅H₅), 104.41 (C₆R₆).$

t Satisfactory analytical data have been obtained for all new compounds.