Synthesis and Some Reactions of 3,3,6-Trisubstituted Tricyclo[3.2.0.01~4]heptan-2-ones

Harry Finch,^a Rona M. Highcock,^b Stanley M. Roberts,^c Kevin M. Short,^c and Vladimir Sik^c

^a*Department of Chemical Research, Glaxo Group Research, Ware, Herts SG12 ODP, U. K.*

b *Chemical Analysis Department, Glaxo Group Research, Greenford, Middlesex UB6 OHE, U.K.*

c Department of Chemistry, Exeter University, Exeter, Devon EX4 4QD, U. K,

Electrophiles and most nucleophiles react with tricyclo[3.2.0.01~4]heptan-2-ones with preferential cleavage of the **C(I)-C(4)** or **C(I)-C(5)** bond; X-ray data show the highly strained tricycloheptanone **(14)** has a bond angle of 149.2(9)° at a tetravalent carbon atom.

The tricyclo^{[3.3.0.01,4]octan-2-ones (1) — (3) are readily pre-} pared and react with the softer nucleophiles such as azide, iodide, cyanide, and thiolate ion as shown.¹ In later studies we found that attack by the harder methoxide ion on compound **(1)** gave the esters **(4)** and *(5)* (95%, ratio 4.3 : 1 respectively) as the only identifiable products.

More recent work showed that electrophilic attack on the **tricyclo[3.3.0.01~4]octan-2-one** ring system leads to fracture of the $C(1)-C(4)$ bond. Thus bromination of the tricyclic ketone **(3)** gave the dihalo-compound **(6) (78%),** while reaction of **(3)** with phenylselenenyl chloride furnished the addition product **(7) (86%).** Attachment of the selenium atom to the quaternary carbon centre was established by the observation of the appropriate 13C-77Se coupling.2 The assignment of stereochemistry to compound **(7)** was aided by nuclear Overhauser enhancement (n.0.e.) measurements. Through-space interactions were observed between the aromatic ring protons, the low-field $C(3)$ -methyl group, and $H-C(5)$ as well as between the high field $C(3)$ -methyl group and $H-C(4)$.

Treatment of the bicyclic ketones (8) — $(13)^3$ with potassium

Table 1. Reactions of 3,3,6-trisubstituted tricycloheptan-2-ones with nucleophiles.

		Reaction conditions		
Substrate	Nucleophile (solvent)	Temp.	Time/h	Product $%$ yield)
(15)	$NH4Cl$, Fe (MeOH)	Room temp.	4	(21)(93)
(16) (17)	$PhCH2NH2(CH2Cl2)$ $Li(ButO)3AlH (THF)a$	Room temp. $-78 \rightarrow 0$ °C	48 12	(22)(100) (23)(89)
(17)	$Et_3N \cdot 3HF$ (CH ₂ Cl ₂)	Reflux	24	(24)(64)

*^a*THF = tetrahydrofuran.

t-butoxide gave the corresponding highly strained tricy**clo[3.2.0.01~4]heptan-2-ones (14)-(19).** The ketone **(14)** was crystalline and X -ray data show that the molecule accommodates most of the intense strain by a remarkable widening of the C(2)–C(1)–C(7) bond angle to $149.2(9)^\circ$ (Figure 1).[†] A

Crystal data for (27) : $C_{21}H_{18}O_3Br_2$, $M = 398.3$, triclinic, space group $P\overline{1}$, $Z = 2$, $a = 9.241(4)$, $b = 10.039(3)$, $c = 11.350(4)$ \overline{A} , $\alpha =$ $87.68(3)$, $\beta = 79.00(3)$, $\gamma = 69.18(3)$ °; $U = 966(1)$ Å³, $F(000) = 476$. The structure was solved by direct methods from data collected at 295 K to $2\theta = 115^{\circ}$ on a Nicolet R3m/V diffractometer with monochromatised Cu- K_{α} X-radiation. For the 2494 observed reflections $[I > 3.0 \sigma(I)]$, and with anisotropic thermal parameters for all non-hydrogen atoms, $R = 0.064$, $R_w = 0.075$, goodness-of-fit = 1.64.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue 1.

Figure 1

(21) $R^1 = CL, R^2 = OSiMe, Bu^1$ **(22)** R^1 = NHCH₂Ph, R^2 = OMe **(23)** $R^1 = H$, $R^2 = OAC$

(24) $R^1 = F, R^2 = OAC$

search of the Cambridge Structural Database⁴ shows this to be the largest interatomic angle yet recorded at a tetracoordinate carbon atom in a crystalline compound at ambient temperature.

 \uparrow *Crystal data* for (14): $C_{19}H_{15}OBr$, *M* = 339.2, monoclinic, space group $P2_1/n$, $Z = 4$, $a = 8.787(3)$, $b = 18.231(7)$, $c = 10.355(5)$ Å , $\beta =$ 110.19(3)°; $U = 1557(1)$ Å³, $F(000) = 688$. The structure was solved by direct methods from data collected at 295 K to $2\theta = 115^{\circ}$ on a Nicolet R3m/V diffractometer with monochromatised Cu- $K_{\alpha} X$ -radiation. For the 1081 observed reflections $[I > 3.0 \sigma(I)]$, and with anisotropic thermal parameters for all non-hydrogen atoms, *R* = 0.060, $\bar{R_w} = 0.063$, goodness-of-fit = 1.49.

The 3,3-diphenyltricycloheptanones (14) — (17) generally react with soft nucleophiles through exclusive attack at $C(5)$ to give 2,3,7,7-tetrasubstituted **bicyclo[3.2.0]heptan-6-ones.** For example the tricyclic compound **(14)** reacted with benzylthiolate ion to give the ketone **(20).** A selection of other results are described in Table 1. Methoxide ion, in contrast, reacted with the ketone **(16)** to give the cyclopentane derivative **(25)** (38%) and the cyclobutane derivatives **(26)** (27%).

As expected from previous work⁵ the $3,3$ -dimethyltricycloheptanone **(19)** is attacked by azide ion or methoxide ion at C(5) *and* C(4) (70-80% yield) with the products formed in the ratio $1:5-10$ respectively. The protection offered to $C(4)$ by the adjacent phenyl group in compounds **(14)-(17)** is underlined.

Addition of bromine to the tricyclic ketone **(17)** gave products of 'cis'-addition to the cyclopropyl unit; thus the major product obtained was the ketone **(27)** (49%); the other product was the dibromo-compound **(29)** (17%). The detailed structure of the highly substituted bicycloheptan-2-one **(27)** was clearly seen from X-ray data (Figure 2).⁺ Addition of phenylselenenyl chloride gave the bicycloheptan-2-one **(28)** (56%) and the bicycloheptan-6-one **(30)** (13%). Thus this strategy may provide a general method for the synthesis of highly substituted bicyclo^[3.2.0] heptan-2-ones.

Received, 4th January 1989; Corn. 9f00060G

References

- 1 **I.** C. Cotterill, H. Finch, D. P. Reynolds, **S.** M. Roberts, H. **S.** Rzepa, K. M. Short, **A.** M. *Z.* Slawin, C. J. Wallis, and D. J. Williams, *J. Chem. SOC., Chem. Commun.,* 1988, 470.
- 2 C. Rodger, N. Sheppard, H. C. E. McFarlane, and W. McFarlane, in 'NMR and the Periodic Table,' eds. R. K. Harris and B. E. Mann, Academic Press, London, 1978, Ch. 12, p. 410.
- 3 *Z.* Grudzinski and **S.** M. Roberts, *J. Chem. SOC., Perkin Trans. 1,* 1975, 1767; H. G. Davies, **S. S.** Rahman, **S.** M. Roberts, B. J. Wakefield, and J. A. Winders, *ibid.,* 1987, 85.
- **4** F. H. Allen, **S.** Bellard, M. D. Brice, B. **A.** Cartwright, **A.** Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, 0. Kennard, W. D. **S.** Motherwell, J. R. Rodgers, and D. G. Watson, *Acta Crystallogr., Sect. B,* 1979, **35,** 2331.
- *⁵*0. Meth-Cohn, **A.** J. Reason, and **S.** M. Roberts, *J. Chem. SOC., Chem. Commun.* , 1982, 90.