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Neohexene inserts into the Ta-H bonds of (C5Me5)Ta(H)2(q2-CHPMe2)(PMe3) (1) to give the co-ordinatively 
unsaturated neohexyl hydride (C5Me5)Ta(H)(CH2CH2CMe3)(q2-CHPMe2) (2) followed by the bis(neohexy1) compound 
( C ~ M ~ S ) T ~ ( C H ~ C I ~ ~ C M ~ ~ ) ~ ( ~ ~ - C H P M ~ ~ )  (3) whose X-ray structure is reported: the stability of these long-chain 
tantalum alkyls may be understood by comparison with pseudo-isoelectronic Group 4 metallocenes. 

The vast majority of co-ordinatively unsaturated transition 
metal alkyl complexes possessing P-hydrogens, and especially 
homoleptic alkyls, are unstable due to the propensity for 
Ij-elimination and subsequent loss of alkene.1 For the heavier 
Group 5 metals, the only stable long-chain alkyls are saturated 
eighteen electron metallocene derivatives of the type 
Cp2M(L)R (M = Nb, Ta; Cp = C5Hs; R = Et, Prn, L = CO, 
isocyanide)2 or Cp2M(0)R (R = Bun)3 in which (3-elimination 
is prevented by strong binding of small n-acid ligands or an 
0x0 group, respectively. Co-ordinatively unsaturated long- 
chain metallocene dialkyls and chloroalkyls, however, are 
reasonably stable for zirconium and hafnium4 due to the 
electronic and steric constraints of the Cp2M moiety which 
prevent the M-C-C-H fragment from achieving a syn 
co-planar arrangement for elimination. Attempts to prepare 
the analogous seventeen electron niobium and tantalum 
derivatives by metathesis of the chloride groups of Cpf2MC12 
[M = Ta, Cp' = Cp, (CSMe5); M = Nb, Cp' = Cp] with excess 
Grignard reagent invariably lead to the eighteen electron 
hydrido-alkene complexes, Cp'2M(H)(CH2=CHR)5 (R = H, 
Me) arising by reduction and metathesis followed by p-elim- 
ination. 

(3) Scheme 1 

Here, we describe neohexene insertions into the Ta-H 
bonds of (1) to give rare examples of stable, co-ordinatively 
unsaturated long-chain alkyl complexes of tantalum. The 
stability of these formally do tantalum alkyls6 may be 
attributed to a similar combination of steric and electronic 
constraints that exist in Group 4 metallocene alkyls.6c.7 

Treatment of (1)8 with excess ethylene affords an intract- 
able mixture of tantalum ethyl, homologated alkyl species, 
and free alkenes (detected by NMR spectroscopy). However, 
when (1) is reacted with an excess of the sterically demanding 
alkene CH2=CHBut (neohexene) , sequential insertions into 
the Ta-H bonds may be observed according to Scheme 1. The 
intermediate alkene adducts are not observable since the 
metal-alkene interactions are weak in these formally do TaV 
compounds. Also, PMe3 is ejected from the metal co-ordina- 
tion sphere upon generation of the alkyl ligand, presumably 
due to the increased steric congestion. The mono-neohexyl- 

C(13) 

Figure 1. (Top) Newman projection, and (bottom) molecular 
structure of (3), with important atoms labelled. Only the major 
disorder component of atom C(42) is shown. Key dimensions: Ta-P 
2.501(2), Ta-C( 11) 1.983( 13), P-C( 11) 1.715( 13), Ta-C(31) 
2.242(11), Ta-C(41) 2.184(16), C(31)-C(32) 1.542(22) A; P-Ta- 
C( 11) 43.1(4), Ta-C( 11)-P 84.8(6), Ta-P-C( 11) 52.1(4), C(31)-Ta- 
C(41) 112.9(7)". 
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fragment and t-butyl groups lying anti-periplanar [the dihedral 
angle between the planes defined by Ta-C(31)-C(32) and 
C( 3 1)-C( 32)-C( 33) is 3.8"]. 

Inert atmosphere solutions of (3) in aromatic or aliphatic 
hydrocarbons are stable to decomposition over several weeks 
at room temperature, decomposing only slowly at 50°C to 
liberate both neohexene and neohexane (1H NMR). The 
stability of (3) to P-elimination may be attributed primarily to 
the inter-ligand stericinteractions which prevent the M-C-C-H 
unit from readily interacting with the metal LUMO and 
achieving a syn co-planar arrangement suitable for elimina- 
tion. The same explanation may also account for the absence 
(by NMR and IR spectroscopies and X-ray crystallography) of 
any agostic interactions involving the a- or P-alkyl hydrogens. 

The analogy between half-sandwich tantalum compounds 
containing the +CHPMe* ligand and bent metallocenes of 
the Group 4 metals is also apparent in reactions of (1) with 
other substrates. These studies will form subjects of future 
reports. 

The authors thank Dr. D. Reed of the Edinburgh High 
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for financial support. 

hydride (2) is observable by NMR spectroscopy? but reacts 
with neohexene at a comparable rate to its formation to give 
the bis(neohexy1) complex (3) which may be isolated as a 
colourless, crystalline solid in 66% yield after crystallization 
from light petroleum. Satisfactory elemental analysis has been 
obtained and further characterization is provided by IR and 
NMR spectroscopies and mass spectrometryt and a single 
crystal X-ray diffraction$ study. The 250 MHz 1H NMR 
spectrum reveals diastereotopic a- and 0-methylene 
hydrogens at 6 0.64/0.20 and 1.53/1.35, respectively. Differ- 
ence NOE experiments indicate a conformationally rigid 
(Ta-CH2) bond since irradiation of the CSMeS hydrogens 
results in a 2.5% enhancement of the a-CH2 signal at 6 0.20 
whilst having no effect upon its diastereotopic partner at 
6 0.64. Conversely, irradiation of the PMe2 methyl resonance 
at 6 1.62 enhances the signal at 6 0.64 by 2.5% but leaves the 6 
0.20 resonance unaltered. These experiments facilitate the 
assignments of Ha and Hb as shown in the Newman projection. 
Neither NOE experiment had any effect upon the P-CH2 
hydrogens H, and H,; however, irradiation of the (CSMe5) 
ring methyl groups results in a strong enhancement (8.5%) of 
the metallacycle methine hydrogen confirming that the CH 
terminus projects towards the ( C5Me5) ring. Colourless prisms 
of (3) may be obtained upon prolonged cooling at -35 "C of a 
saturated light petroleum solution. The molecular structure is 
illustrated in Figure 1 and important distances are shown in 
the Figure caption. The co-ordination sphere of (3) consists of 
a y5-co-ordinated C5Me5 ligand, a 3-membered Ta(q2- 
CHPMe2) metallacycle, which is essentially unperturbed from 
the parent complex (1),8 and two neohexyl ligands. One of the 
neohexyl groups is disordered at the P-carbon C(42) which 
exists with approximately equal probabilities (55 : 45) in two 
sites; the discussion is therefore confined to the non-disor- 
dered neohexyl ligand. The Ta-C, distance of 2.242( 11) 8, lies 
within the range of tantalum-carbon single bonds in TaV alkyl 
complexes (typically 2.2-2.3 8,1*). The neohexyl ligand 
adopts a staggered conformation with the bulky metal 

? Selected NMR data for (2): 'H NMR (C6D6,250 MHz, 298 K) 6 8.71 
(d, 1H,2JpH2.0H~, CHPMe2),4.74(d, 1 H , 2 J p ~  12.0Hz,M-H),2.05 
(s, 15H, CsMes), 1.52 (d, 3H, 2JpH 9.6 Hz, PMe2), 1.37 (d, 3H, 2 J p ~  
10.2 Hz, PMe2), 1.04 (s, 9H, CMe3), CH2 resonances obscured by 
methylenes of (3). For (3): *H NMR (C6D6 250 MHz, 298 K) 6 9.05 (s, 
l H ,  CHPMe2), 1.79 (s, 15H, CSMeS), 1.62 (d, 6H, 2PH 8.9 Hz, 
CHPMe*), 1.53 (ddd, 2H, 3 5 ~ b ~ d  4.1, 3 J ~ a ~ d  = 2 J ~ c ~  13.6 HZ, Hd), 
1.35 (ddd, 2H, 3 J ~ , ~ c  4.0, 3 J ~ b ~ c  = 2 J ~ c ~ d  13.6 Hz, HJ, 1.00 (S,  18H, 
CMe3), 0.64 (dddd, 2H, 3 J p ~ b  10.8, 33HbHd 4.1, 3 J ~ b H c  13-63 2JH,Hb 
12.2 H Z ,  Hb), 0.20 (dddd, 2H, 3 J p ~ a  9.9, './H,H, 4.0, 3 J ~ , ~ d  13.6, 
2 J ~ a ~ b  12.2 Hz, Ha); 13C NMR (C6D6,62.9 MHz, 298 K) 6 204.9 (dd, 
I J C H  166.9, *Jcp 58.9, CHMe2), 112.5 (s, CSMeS), 53.9 (t, ~J,-H 116.8, 
CH~CH~BU') ,  44.7 (t, lJcH 124.6, C H ~ C H ~ B U ~ ) ,  34.02 [s, C(Me)3], 
15.8 [qd, 'JCH 125.4, 'Jcp 17.5, P(CH=,)2], 29.6 [q, 'JCH 123.9, 
C(CH3)3], 11.0 [q, *JCH 126.9, C5(CH3)5]; 31P{1H} NMR (C6D6, 101 
MHz, 298 K)-6 -46.85 (s, CHPMe2). 

$ Crystal data for C25H48PTa: M = 560.6, monoclinic, P21/c, a = 
17.663(2), b = 10.401(2), c = 16.776(3) A, p = 115.73(1)", U = 2776.4 
A3, Z = 4, D, = 1.341 g cm-3, h(Mo-K,) = 0.71073 A, p = 3.98 
mm-l, F(OO0) = 1144, T = 295 K. The structure was determined by 
Patterson methods and refinedg to a minimum of EwA2 [A = IF,) - 

G = FJFmax.7 H = sin Wsin Omax.]10 from 2644 reflections with 28 < 
45" and F > 40, ( F )  (a, from counting statistics only), measured with a 
Stoe-Siemens diffractometer and on-line profile fitting. l1 Anisotropic 
thermal parameters were refined for all non-H atoms, H atoms were 
not included. Final R = 0.038, R, = ( ~ : W A ~ L Z W F , ~ ) ~ / ~  = 0.041, for 254 
parameters. Two-fold disorder was resolved and refined for one 
carbon atom. Atomic co-ordinates, bond lengths and angles, and 
thermal parameters have been deposited at the Cambridge Crystallo- 
graphic Data Centre. See Notice to Authors, Issue No. 1. 

IF,/, w-* = a2 ( F )  = aC2 ( F )  + 79 + 4G - 7G2 - 195H + 1 2 3 s  - GH, 
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