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p-Lactams from Allyl- and (Allenylmethyl)-silanes

Ernest W. Colvin* and Michael Monteith

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK

The N-chlorosulphonyl B-lactams formed as intermediates in the reaction between chlorosulphonyl isocyanate and
allyl- and (allenylmethyl)-silanes can be intercepted by aqueous sodium sulphite; this has allowed the preparation of
a range of usefully functionalised monocyclic N-protio B-lactams.

The reaction of chlorosulphonyl! isocyanate (CSI) with func-
tionalised alkenes, in particular with vinyl esters,! has proved
to be of great utility in the preparation of monocyclic
[-lactams. We were intrigued by an early report2 by Dunogués
on the reaction between allylsilanes and CSI. Allyltrimethyl-
silane was reported to produce the silyl imidate (1) directly;
however, using the dimethylallylsilane (2) an intermediate
B-lactam (3) was detected by IR and 1H NMR spectroscopy;
this unisolated intermediate was reported to rearrange in
solution over a period of one hour at ambient temperature to
the acyclic imidate ester (4), by an implied intramolecular

silatropic shift. Fleming? has made good use of this processin a
key step in a synthesis of loganin aglycone.

In agreement with Dunogués, we have found that allyl-
trimethylsilane reacts with CSI to give the silyl imidate (1);
indeed, using low-temperature *H NMR spectroscopy and
monitoring the SiMe; signal, we have found that no reaction
occurs at —40 °C, whereas at 0 °C clean rearrangement takes
place, with no intermediates being detected.

On the other hand, with the dimethylallylsilane (2) the
intermediate N-chlorosulphonyl $-lactam (3) can be readily
intercepted (Scheme 1) by in situ treatment with aqueous
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sodium sulphite4 to afford 3,3-dimethyl-4-(trimethylsilyl-
methyl)-azetidin-2-one? (5) as a white crystalline solid, m.p.
87-88 °C, in greater than 60% yield. Indeed, the intermediate
N-chlorosulphonyl B-lactam (3) is stable in solution for at least
24 h at ambient temperature, but it does rearrange on
concentration, even in the cold, to the imidate ester (4),
suggesting a bimolecular pathway for this rearrangement.

We are studying this reaction with a range of allylsilanes to
establish its scope and utility. However, usefully functional-
ised allylsilanes are relatively uncommon, and one is still left
with saturated alkyl groups at C-3 and trimethylsilylmethyl
groups at C-4. We are, therefore, extending this study in two
complementary directions: (a) by varying the allyl substitution
to provide more useful functionality at C-3, and (b) by varying
the silyl substitution to allow oxidative cleavage of the C-Si
bond, resulting in the overall introduction of a hydroxymethyl
or oxidatively related group at C-4.

To generate more useful functionality at C-3, (allenyl-
methyl)silanes suggest themselves as ideally functionalised
candidates: on cycloaddition, introduction of alkylidene
substitution would produce potential asparenomycin and
carpetimycin precursors.

i All new compounds were fully characterised by elemental analysis
and/or high resolution mass spectrometry, and IR, and 'H and 13C
NMR spectroscopy.

1 As a possible explanation for these differing results, it should be
noted that Dunogueés operated at =3.5 M, Fleming at =2 m, whereas
we used much more dilute, =0.2 M, conditions.
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Scheme 4. TMEDA = tetramethylethylenediamine.

(Allenylmethyl)trimethylsilanes are readily prepared by
reaction between [(trimethylsilyl)methyl]copper(r) species
and derivatives of propynylic alcohols.> The dimethylallene
(6) reacted (Scheme 2) with CSI to give the crystalline
3-alkylidene B-lactam (7), m.p. 118-120 °C, in 22% yield.®
The monomethylallene (8) reacted similarly, albeit in ~10%
yield, to give the B-lactams (9) and (10) as a 4:1 (E)—~(Z)-
mixture (Scheme 3).

The allyl/vinyldisilane’ (11) reacted smoothly with CSI to
provide the crystalline trans-p-lactam (12), m.p. 67-68 °C, in
50% yield (Scheme 4) suitably functionalised at C-3 for
Peterson alkenation {as in the reported® synthesis of (—)-
asparenomycin C]. Further, this $-lactam underwent quantita-
tive desilylation at C-3 on treatment with KF-MeCN, provid-
ing access to the otherwise unobtainable (by this protocol)
3-unsubstituted B-lactam (13). Since phenyldimethylsilyl
groups can be cleaved® to hydroxy groups by a sequence of
protiodesilylation using HF equivalents, followed by oxida-
tion, this provides a masked form of the synthetically useful
4-hydroxymethylazetidin-2-one.

The regiochemistry of the above cyclisation processes must
be under the control of the $-effect, silicon encouraging the
development of carbonium ions or partially developed such
species f to it, and yet the silyl group is not lost. If a two-step
zwitterionic mechanism! holds in such cases, this is remark-
able, since it has been clearly demonstrated!® that electro-
philic attack on allylsilanes normally leads to silyl loss with the
formation of substituted products with a net double bond shift,
vig an intermediate $3-silyl cation.

We plan to extend these potentially useful observations, in
particular by constructing suitably functionalised homochiral
allenes with either phenyldimethylsilylmethyl or isopropoxy-
dimethylsilylmethyl!! substituents.
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