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Pentaborane(9) reacts with [Fe(PMe3)s(n2-CH,PMes)H] to give [2,3-{Fe(PMes),}2(u-H)B4Hsl (1) and
[2-{Fe{PMes)3}B4Hs] (2) in yields of up to 1 and 22% respectively; the X-ray crystal structure of (1) shows a
nido-pentaborane(9) structure in which a BH; fragment caps the Fe,B face.

The chemistry of metallaboranes has revealed a rich diversity
of polyhedral structural classes.! Here we report the synthesis
of a new and unexpected tetraboron di-iron cluster. Treat-
ment of a solution of pentaborane(9) with one equivalent of
[Fe(PMe3)s(m2-CH,PMe,)H]? for 24 h at ambient temperature
followed by column chromatography on silica gave black,
crystalline [2,3-{Fe(PMes),}»(u-H)B4sHg] (1) (dark red-
brown in solution) and orange, crystalline [2-{Fe-
(PMe3);}B4Hg] (2) in 1 and 12% yields respectively [com-
pound (2) is available in up to 22% yields using 1.5 equivalents
of pentaborane(9)]. As part of our project on metal-boron

clusters we have been trying to find routes to small metallabor-
anes that can be made on the gram scale.3 Few easy, high-yield
syntheses are known and consequently little reaction chem-
istry has been explored.! Compound (2) can be made in gram
quantities, for example 5 g of [Fe(PMes)s(n2-CH,PMe,)H]
(one step from FeCl,)? gives 1 g (22%) of (2). Thus, (2) is
available for further reactivity studies. Solutions of (1)
decompose in a few minutes in air, but the solid is more stable,
decomposing slowly over 2—3 days, whereas (2) appears to be
air-stable in the solid state but decomposes slowly in solution.

A single crystal X-ray diffraction study of (1) was carried
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Figure 1. Molecular structure of compound (1). Selected bond
distances (A): Fe(2)-Fe(3) 2.7055(5), Fe-P(average) 2.186, Fe(2)-
B(1) 2.109(3), Fe(2)-B(5) 2.132(3), Fe(2)-B(6) 2.020(3), Fe(3)-B(1)
2.107(3), Fe(3)-B(4) 2.109(3), Fe(3)-B(6) 2.024(3), Fe(2)-H(23)
1.66(3), Fe(3)-H(23) 1.64(3), B(1)-B(4) 1.743(5), B(1)-B(5)
1.736(5), B(1)-B(6) 1.821(5), B(4)-B(5) 1.782(5). Selected bond
angles (°): Fe(2)-B(6)-Fe(3) 84.0(1), Fe(2)-H(23)-Fe(3) 110.1(19),
Fe(2)-Fe(3)-B(4) 77.5(1), Fe(3)-Fe(2)-B(5) 77.4(1), B(1)-Fe(2)-
B(6) 52.3(1).

out.t The structure is shown in Figure 1, and is best considered
as a capped nido-square-pyramidal structural analogue of
pentaborane(9) with two adjacent basal iron atoms and a
non-crystallographic mirror plane. The Fe,B face is capped by
a boron atom with two equivalent Fe-H-B bridging hydrogen
atoms. There are four bridging hydrogen atoms around the
square base. Additionally, each boron atom is bonded to a
terminal hydrogen atom, and each iron atom is bonded to two
PMe; ligands. Capping by a BH fragment is known in cluster
chemistry {for example the capped closo-molecules [Co(n-
CsRs)lsBsHy (R = H, Me)},4 but this is the first example of a
nido-metallaborane capped by a BH; fragment.

A skeletal electron count® shows that (1) has seven skeletal
electron pairs and is effectively isoelectronic with B¢Hg?~ and
the parent neutral borane B¢Hg, which, although not isolated,
has been the subject of considerable theoretical interest. In
particular, Wade and Fehlner have demonstrated that the
face-capped square-pyramidal structure becomes favoured
relative to the octahedron on protonation, although the total

T Data were collected on an Enraf-Nonius CAD4 diffractometer (3°
<20 <50°. The structure was solved from direct methods and
Fourier syntheses and refined by full-matrix least-squares procedures
with anisotropic thermal parameters for all non-hydrogen atoms.
Hydrogen atoms bonded to carbon atoms were included in calculated
positions (C-H 0.96 A) and refined riding on their attached atom.
Hydrogen atoms bonded to boron atoms were located from a
difference synthesis and their co-ordinates and isotropic thermal
parameters refined. Crystallographic calculations were carried out
using the Oxford *CRYSTALS’ package.!3

Crystal dota for (1): CioHyeBsFeoPs, M = 469.32, monoclinic, space
group P2y/n, a = 15.847(9), b = 16.277(2), ¢ = 9.829(9) A, B =
91L.11(8%), U =2534.8 A3, Z=4,D.=1.229gcm~3, u = 13.89 cm~?,
£(000) = 1000, R = 0.031 and R, = 0.034 for 3072 observed
reflections with / > 30(1) and 240 refined least-squares parameters,
MMo-K,) = 0.710 69 A, crystal size ca. 0.35 x 0.40 X 0.70 mm.

Atomic co-ordinates, bond lengths and angles, and thermal
parameters have been deposited at the Cambridge Crystallographic
Data Centre. See Notice to Authors, Issue No. 1.
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Figure 2. Proposed structure for (2), nido-{2-{Fe(PMe;);}B,Hg).

number of skeletal electrons remains the same.6 The import-
ance of protonation has also been shown by the observation
that [Osg(CO)15]2~ adopts a closo-structure whereas the
neutral diprotonated compound, {Os¢H,(CO);5], is a capped
square pyramid.” The large number of bridging hydrogen
atoms in (1) similarly leads to a preference for the capped
square pyramid in (1). Compound (1) is the first metallabor-
ane analogue of the parent species B¢Hg which adopts a
capped square-pyramidal structure. [{Co(n-CsHs)},B4Hg]
has the same skeletal electron count as (1) but adopts a
closo-octahedral structure.8

Compound (1) can also be considered notionally as a
complex between the di-iron fragment [{Fe(PMe;),} (n-H)]*
and the B4Hy~ anion which is isoelectronic with the cyclo-
propylmethyl cation C4H;*. This cation has been the centre of
the classical-non-classical carbonium ion controversy and the
weight of evidence now is more consistent with a non-classical
structure.? Interestingly, the B4Hy~ fragment in this structure
corresponds to a classical C;H;* structure.

Compound (1) has also been further characterised by
multinuclear NMR spectroscopyi and elemental analysis.
From an 11B-11B COSY NMR experiment, strong coupling is
observed between the two boron atoms, B-1 and B-6, as well
as coupling from B-1 to B-4 and B-5 consistent with the
observed structure.

Compound (2) -has been characterised by multinuclear
NMR spectroscopyf and elemental analysis as the basally
substituted pentaborane(9) analogue [2-{Fe(PMe;)s{B,Hg]
(see Figure 2). This contrasts with [1-{Fe(CO);}B4Hs] in
which the Fe(CO); fragment prefers the apical position.10 The

t Selected spectroscopic data {solvent [2Hg]benzene for (1) and (2)},
'HNMR at 200 MHz, 3'P NMR at 101 MHz and "B NMR at 64 MHz,
chemical shifts (8) in ppm and coupling constants in Hz. External
references: 31P NMR P(0O)(OMe);; 1B NMR BF;-OEt,.

Compound (1): 'H{!1B} NMR, 7.32 (1H, 6-H), 5.12 (2H, 4-H,
5-H), 1.29 (m, 36H, PMe;), —0.44 (1H, 45-H), —0.64 (quart., 1H,
1-H), —20.26 (2H, 25-H, 34-H), —22.35 (t, J 22, 2H, 26-H, 36-H),
—25.15 (t,J 33, 1H, 23-H); "B NMR, 78.0 (m, 1B, B-6), 26.9 (m, 2B,
B-4, B-5), —21.3 (d, J 129, 1B, B-1); 31P{1H} NMR, 27.64 (d, J 35,
1P, PMe3s), 16.97 (d, J 35, 1P, PMe;).

Compound (2): 'H{"'B} NMR, 4.08 (1H, 4-H), 2.44 (2H, 3-H,
5-H), 1.33 (1H, 1-H), 1.11 (d, J 8, 9H, PMe3;), 1.08 (d, J 7, 18H,
PMe;), —2.64 (2H, 34-H, 45-H), —17.39 (2H, 23-H, 25-H); 1B
NMR, 0.3 (d, J 146, 1B, B-4), —11.4 (d, J 141, 2B, 3-B, 5-B), =32.6
(d, J 150, 1B, B-1): 3IP{1H} NMR, 25.42 (d, J 37, 2P, PMe3), 3.07
(t, J 37, 1P, PMes).
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only group 8 metallaboranes that are isoelectronic with (2) are
2-[Os(CO)(PPh;),B,Hg)!t and 2-[Ru(n-CsMeg)B,Hg).12
We thank the SERC for a studentship to M. A. K.
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