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(55)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one as a Highly Effective Chiral Auxiliary

for Asymmetric Reduction of a-Oxo Amides

Igor Solodin,* Yuri Goldberg, Gunars Zel¢éans, and Edmunds Lukevics
Institute of Organic Synthesis, Latvian Academy of Sciences, 226006 Riga, USSR

Reduction of the a-oxo amide derived from phenyiglyoxylic acid, containing
(65)-6-benzyl-2,2,3-trimethylimidazolidin-4-one as a chiral auxiliary, with NaBH, or via fluoride ion-induced
hydrosilylation with HSiMe,Ph was found to proceed with 90—100% diastereoselectivity.

Reduction of w-oxo acid derivatives bearing the appropriate
chiral auxiliary is the conventional route to optically active
«-hydroxy-acids.!-2 Recently the asymmetric reduction of
chiral a-oxo amides bearing a heterocycle as the chiral
auxiliary (proline,3# trans-2,5-disubstituted pyrrolidines’) has
been studied. This seems to be a promising approach owing to
the well known planarity of the amide group and, conse-
quently, the lower number of possible conformers in the
transition state than with chiral «-oxo esters. We studied the
reduction of the «-oxo amide (55)-(2) (Scheme 1) derived
from phenylglyoxylic acid and containing (55)-5-benzyl-2,2,3-
trimethylimidazolidin-4-one® as a chiral auxiliary. Until now,
this auxiliary has not been employed for asymmetric reduc-
tion. The chiral heterocycle (55)-(1)T was prepared in 82%
yield by the reaction of (S)-8-phenyl-a-alanine N-methyl-
amide” and acetone (1.5 equiv.) by refluxing in dimethylform-
amide (DMF) (10 h). Subsequent N-acylation with PhCO-
COCI® gave the «-oxo amide (55)-(2)T in 72% yield.
Reduction of (55)-(2) with NaBH, (0.75 equiv.) in dimethoxy-
ethane (DME) (25°C) gives a mixture of a-hydroxy amides
(58, 2’R)-(3) and (55, 2'S)-(3) in good yield with a consider-
able excess of one of the diastereoisomers (90.5:9.5).

‘o determine the direction of asymmetric induction an
alternative synthesis of authentic (55, 2'R)-(3) was carried out
[i, (R)-PhCH(OH)CO,H (1 equiv.), (COCl); (1 equiv.),
CH,Cl,, 25°C, 1 h; ii, (55)-(1) (1 equiv.), Et;N (2 equiv.),
CH,Cl;, 0°C]. The sample obtained in this way, (55, 2'R)-(3)
and the predominant diastereoisomer obtained from the
reduction of the w-oxo amide (55)-(2) with NaBH,; were
identical (!H NMR, m.p., HPLC retention time). The
a-hydroxy amide (55, 2'R)-(3) can easily be isolated by
crystallization (twice) from ether; the a-hydroxy amide (58,
2'S)-(3) was isolated from the filtrates by preparative HPLC
on silica (eluent dioxane-hexane, 25:75).1

Thus, reduction of the w-oxo amide (55)-(2) with NaBH,
proceeds with high diastereoselectivity which was comparable

1 Compound (55)-(1), viscous oil; {«]p?5 — 48.7° (¢ 2.92, EtOH); IR
(neat) v/iem—1 3330, 2980, 1645, 1405, 1370; 1H NMR (CDCl;) § 1.16
and 1.27 (each s, 3H, NCMe,N), 1.87 (br.s, 1H, NH), 2.74 (s, 3H,
NMe), 3.00—3.13 (m, 2H, PhCH,), 3.71—3.87 (m, 1H, CHCO), 7.25
(s, 5SH, Ph).

Compound (55)-(2), m.p. 103—105°C; [a]p25 + 268.4° (¢ 2.06,
EtOH); IR (Nujol) v/cm~1 1740, 1685, 1635, 1235; 1H NMR (CDCl;)
60.82 and 1.73 (each s, 3H, NCMe,N), 2.62—3.38 (m, 2H, PhCH,),
2.71 (s, 3H, NMe), 4.62—4.75 (m, 1H, CHCO), 6.98—8.18 (m, 10H,
2Ph).

Compound (55, 2'R)-(3) m.p. 159—160 °C; [a]425 + 48.8° (¢ 5.28,
EtOH); IR (CCly) viem~—! 3440, 2950, 1720, 1665, 1370; 'H NMR
(CD3SOCD3-D,0) 6 0.56 and 1.29 (each s, 3H, NCMe;N), 2.53 (s,
3H, NMe), 3.02—3.47 (m, 2H, PhCH,), 4.29—4.44 (m, 1H, CHCO),
5.47 (s, 1H, CHOH), 7.02—7.53 (m, 10H, 2Ph). Compound (55,
2'8)-(3), m.p. 113—115°C; [a]p?® + 112.5° (¢ 1.06, EtOH); IR (CCly)
v/iem~1 3410, 2945, 1715, 1660, 1370; 'H NMR (CD;SOCD;-D,0)
60.58 and 1.47 (each s, 3H, NCMe;N), 2.56 (s, 3H, NMe), 3.04—3.18
(m, 2H, PhCHy), 4.80—5.00 (m, 1H, CHCO), 5.38 (s, 1H, CHOH),
6.62—7.60 (m, 10H, 2Ph).

with the best results achieved when (2R, 5R)-trans-2,5-bis-
(methoxymethoxymethyl)pyrrolidine was used as chiral aux-
iliary and KB(OPri);H, which is difficult to obtain, was used as
a reducing agent.> As regards the direction of asymmetric
induction in this reaction, it is obvious that, as in the case of
reduction of other chiral a-oxo amides with different complex
hydrides,s the hydride ion attacks the less hindered side of the
«-carbonyl atom of the predominant trans-coplanar con-
former (55)-(2) (Scheme 2).

On the other hand, during the reduction of (—)-menthyl
phenylglyoxylate via hydrosilylation with diarylsilanes cata-
lysed by rhodium complexes, the direction of asymmetric
induction is opposite to that occurring during the reduction by
hydrides® and gives (S)-mandelic acid!® after hydrolysis. This
difference has been assumed to be due to the fact that the two
carbonyl groups of phenylglyoxylate are in a cis-coplanar
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Scheme 1. Reagents and conditions: i, PhCOCOCI (1 equiv.), Et3N (1
equiv.), CH,Cl,, 0°C; ii, NaBH,4 (0.75 equiv.), DME, 25°C; iii,
HSiMe,Ph (4 equiv.), CsF (5 mol%), 18-crown-6 (5 mol% ), CH,Cl,,
25°C; iv, HCI, Me,C=0.

Scheme 2
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conformation during the reaction, and are chelated in the
rhodium complex.9-10 The hydrosilylation of the «-oxo amide
(58)-(2) by diphenylsilane with rhodium complexes
{RhCI1(PPhs)s, [Rh(norbornadiene)(PPhs),]*PFg~,
{Rh(cyclo-octadiene)Cl],} fails to occur. Fluoride ion-induced
hydrosilylation!! of (55)-(2) by dimethylphenylsilane in the
presence of 18-crown-6 proceed stereospecifically to give
(after desilylation) (5S, 2'R)-(3) in 40% yield (chemo-
selectivity 100% ). Thus, the direction of asymmetric induction
in this reaction is consistent with that in the reduction of
(55)-(2) by NaBH, [predominant formation of (2'R)-hydroxy
amide]. In our opinion, this confirms the above stereochem-
ical model, since it is known!2 that fluoride ion-catalysed
hydrosilylation of the C=O bond of carbonyl compounds
involves nucleophilic attack of this bond by the five-co-
ordinated organosilicon intermediate [HSiR;F]~.

Thus, the reduction of the a-carbonyl group of the «-oxo
amide in high asymmetric yield indicates the high stereodif-
ferentiating ability of (55)-5-benzyl-2,2,3-trimethylimidazol-
idin-4-one in the reactions studied.
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