Thermal and Photochemical Reactions of Rhodium(trialkylsilyI)hydride Complexes: NMR and Bonding of Poly(silyl)(hydride) Complexes

Simon B. Duckett and Robin N. Perutz"

Department of Chemistry, University of York, York YO7 SDD, *UK*

Thermal reaction of (η ⁵-C₅H₅)Rh(C₂H₄)(H)(SiR₃) with R'₃SiH (R, R' = Et, Me) generates the sterically hindered poly(silyl) complexes (η ⁵-C₅H₅)Rh(SiR'₃)₂(SiR₃)H, some of which contain an η ²-silane ligand; these complexes undergo silyl migrations with an excess of silane and also prove photosensitive.

We recently reported the photochemical synthesis of $(Cp)Rh(C_2H_4)(H)(SiR_3)$ **1** $(Cp = \eta^5-C_5H_5$, **1a** $R = Et$, **1b** $R =$ Me) and $(Cp)Rh(SiR_3)_{2}(H)_{2}$ **2 (2a** R = Et, **2b** R = Me).¹ The former compounds are ideally set up for hydrosilation and are indeed hydrosilation catalysts. The latter belong to the increasingly numerous group of Rh^V and IrV organometallics.2 Complexes **1** and **2** contain normal 2-centre Rh-Si and Rh-H bonds in contrast to several d⁶ η ²-silane complexes.³ Prior to examining the mechanism of hydrosilation by **la** and **lb,** we have investigated their photochemical and thermal

reactivity towards two-electron donors and trialkylsilanes. These studies have revealed contrasts between thermal and photochemical reactivity, and have generated a new class of sterically hindered poly(sily1) complexes, which probably possess dynamic η^2 -silane ligands.

It is well known that metal(a1kene)hydride complexes undergo a reversible [1,3] H-shift .4 That complex **1** undergoes such a shift can be demonstrated by selectively generating the deuteriated complexes $(Cp)Rh(C₂H₄)(D)(SiR₃)$ or $(\eta⁵$ - $C_5D_5)Rh(C_2D_4)(H)(SiR_3)$ and following the growth/loss of the hydride resonance by ¹H NMR spectroscopy.⁺ We expected, therefore, to be able to trap the resulting intermediate, $(Cp)Rh(Et)(SiR₃)$, with a suitable ligand. CO and ButNC react instead to displace the ligands from **1** yielding $(Cp)Rh(C₂H₄)L$ and $(Cp)RhL₂(L = CO$ and Bu^tNC).⁵ When the substrate is ethene, very slow reaction leads to $(Cp)Rh(C_2H_4)$ and $(Cp)Rh(C_2H_4)(CH_2=CHSiEt_3)$ in a ratio of $2.5:1.5$ However, with Me₂SO, the $(Cp)Rh(Et)(SiEt_3)$ intermediate is trapped to form $(Cp)Rh(Me_2SO)(Et)(SiEt_3)$ **3** together with $(Cp)Rh(Me_2SO)(H)(SiEt_3)$ 4 in a 1:1 ratio. $\ddot{\ddot{}}$ The identity of **4** was confirmed by its independent generation from reaction of 2a with Me₂SO.⁶

The precursors **la** and **lb,** and the products of reaction with

+ The half-life for the exchange of the hydridic proton in $(C_5D_5)Rh(C_2D_4)(H)(SiR_3)$ is 4 h.

\$ Selected spectroscopic data for **3-8.** NMR spectra were recorded in $[{}^{2}H_{8}]$ -toluene at 300 MHz (¹H). ¹³C and ²⁹Si spectra (see Table 1 for **5** and **6)** were recorded either using the DEPT enhancement techniques or with decoupling only during data acquisition. ¹⁰³Rh spectra were recorded at 12.59 MHz.

0.6 Hz, Me₂SO), 2.48 (m, 3H, Me₂SO), 1.97 (m, 1H, CH_AH_BCH₃), 1.47 (m, 4H, $CH_AH_BCH_3$), 1.19 (m, 9H, SiEt₃) and 1.07 (m, 6H, SiEt₃); ¹³C{¹H} δ 92.68 (d, J_{RhC} 2.3 Hz, C₅H₅), 58.23 (d, J_{RhC} 2.1 Hz, $Me₂SO$), 55.72 (s, Me₂SO), 26.01 (d, J_{RhC} 1.5 Hz, RhCH₂CH₃), 11.7 (s, J_{SiC} 42.4 Hz, SiCH₂CH₃), 11.0 (s, SiCH₂CH₃) and 2.18 (d, J_{RhC} 26.7 Hz, RhCH₂CH₃). The ethyl group of $(Cp)Rh(Et)(SiEt₃)(CD₂$ -SOCD₃) in CD₃SOCD₃ was identified by ¹H COSY at 360 MHz: δ 1.76 (m, lH), 1.42 (t, 3H) and 1.35 (m, 1H); *(mlz* 284 (12%), 254 (27), 246 (34) and 196 (33); satisfactory C, H analysis. **3**, ¹H: δ 4.93 (d, 5H, J_{RhH} 0.6 Hz, C₅H₅), 2.51 (q, 3H, $J_{\text{RhH}} = J_{\text{HH}} =$

4, ¹H: δ 4.97 (t, 5H, $J_{\text{RhH}} = J_{\text{HH}} = 0.5$ Hz, C₅H₅), 2.54 (m, 3H, Me₂SO), 2.46 (d, 3H, *J*_{RhH} 0.6 Hz, Me₂SO), 1.21 (t, 9H, *J*_{HH} 7.2 Hz, SiCH₂CH₃), 1.03 (m, 6H, SiCH₂CH₃) and -13.45 (d, 1H, J_{RhH} 33.0 Hz, RhH); ¹³C{¹H} δ 89.06 (d, J_{RhC} 1.3 Hz, C₅H₅), 59.79 (d, J_{RhC} 2.8 Hz, Me₂SO), 59.44 (s, Me₂SO), 13.05 (s, SiCH₂CH₃) and 10.71 $(s, SiCH₂CH₃).$

 J_{HH} 8.0 Hz, SiCH₂CH₃), 0.98 (q, 18 H, J_{HH} 8.0 Hz, SiCH₂CH₃) and C_5H_5), 15.34 (d, J_{RhC} 1.6 Hz, SiCH₂CH₃) and 11.16 (s, SiCH₂CH₃). **5a** ¹H: δ 5.26 (dd, 5H, J_{RhH} 0.5 Hz, J_{HH} 0.2 Hz, C_5H_5), 1.06 (t, 27H, -13.18 (d, 1H, J_{RhH} 35.3 Hz, RhH); ¹³C{¹H} δ 93.01 (d, J_{RhC} 2.1 Hz,

5b, ¹H: δ 5.00 (dd, 5H, $J_{\rm Rhh}$ 0.5, $J_{\rm HH}$ 0.3 Hz, C_5H_5), 0.43 (dd, 27H, $J_{\rm RhH}$ 0.5, $J_{\rm SH}$ 0.3, $J_{\rm SiH}$ 6.4 Hz, SiMe₃) and -12.78 (d, 1H, $J_{\rm RhH}$ 36.6, RhH); ¹³C(¹H) δ 94.5 (d, J_{RhC} 2.1 Hz, C₅H₅), 11.61 (d, J_{RhC} 0.9, J_{SiC} 46.9 Hz, SiMe3); *mlz* 388 (0.02%, M+), 372 (0.14), 357 (0.54), 341 $(0.8), 314 (3.6), 298 (30), 242 (36), 240 (23), 226 (100), 211 (6.0), 196$ (8.7) and 168 (6.6).

6a, ¹H: δ 5.06 (dd, 5H, *J*_{HH} 0.3, *J*_{RhH} 0.5 Hz, C₅H₅), 1.03 (t, *J*_{HH} 9 Hz, SiCH₂CH₃), 0.94 (q, J_{HH} 9 Hz, SiCH₂CH₃), 0.45 (dd, 18H, J_{HH} 0.2, J_{RhH} 0.5 Hz, SiMe₃) and -12.96 (d, 1H, J_{RhH} 35.9, RhH); ¹³C{¹H} δ 94.02 (d, J_{RhC} 2.3 Hz, C₅H₅), 14.65 (s, SiCH₂CH₃), 12.13 (d, J_{RhC} 1.2 Hz, SiMe₃) and 10.48 (s, SiCH₂CH₃).

Hz, SiCH₂CH₃), 1.01 (dq, SiCH₂CH₃), 0.30 (s, 9H, SiMe₃) and C_5H_5), 15.24 (s, SiCH₂), 12.05 (d, J_{RhC} 1.2 Hz, SiMe₃) and 10.75 (s, $SiCH₂CH₃$). **6b**, ¹H: δ 5.13 (dd, 5H, J_{HH} 0.3, J_{RhH} 0.5 Hz, C_5H_5), 1.07 (t, J_{HH} 8 -13.10 (d, 1H, J_{RhH} 35.4, RhH); ¹³C{¹H} δ 93.6 (d, J_{RhC} 2 Hz,

7a, ¹H: δ 5.16 (m, 2H, C₅H₄) 5.13 (m, 2H, C₅H₄), 1.06 (t, 18H, J_{HH} 8 Hz, RhSiCH₂CH₃), 1.02 (t, 9H, J_{HH} 8 Hz, SiCH₂CH₃), 0.84 (q, 12H, J_{HH} 8 Hz, SiCH₂CH₃), 0.75 (q, 6H, J_{HH} 8 Hz, SiCH₂CH₃) and -14.08 (d, 2H, J_{RhH} 37.2, $^{2}J_{\text{SiH}}$ 7.0 Hz, RhH); ¹³C{¹H} δ 98.93 (d, J_{RhC} 2.7 Hz, CH), 98.40 (d, J_{RhC} 2.3 Hz, CSiEt₃), 91.62 (d, J_{RhC} 2.5 Hz, CH), 14.88 (d, J_{RhC} 1Hz, RhSiCH₂) 9.99 (s, SiCH₂CH₃), 8.87 (s, $SiCH_2CH_3$) and 6.35 (s, $SiCH_2$); ²⁹Si{¹H} δ 37.35 (d, J_{SiRh} 16.8 Hz, RhSi) and -0.85 (s, C₅H₄Si); ¹⁰³Rh (¹H-INEPT) δ –1908 (-1,0,+1, JRhH 37.3 Hz); *m/z* 398 *(5%),* 338 (9), 310 (16), 282 (8), 254 (81, 227 (8) and 196 (7); satisfactory C, H analysis.

7b, ¹H: δ 5.05 (m, 4H, C₅H₄), 0.42 (dt, 18H, J_{RhH} 0.6, J_{HH} 0.4 Hz, RhSiMe₃), 0.20 (s, 9H, J_{SH} 6.75 Hz, SiMe₃) and -13.90 (d, 2H, J_{Rh} H 39.2, ²J_{SiH} 7.1, RhH); ¹³C{¹H} δ 98.84 (d, J_{RhC} 2.8 Hz, CH), 91.55 (d, J_{RhC} 2.8 Hz, CH), 13.61 (d, J_{RhC} 1.6, J_{SiC} 47 Hz, RhSiMe₃) and 1.97 $\left(s, J_{\text{SiC}} 52.6 \text{ Hz}, \text{C}_5 \text{H}_4 \text{Si} M e_3\right); \frac{29}{3} \left(1 \text{ H}\right) \delta \left(6.61 \left(\text{d}, J_{\text{SiRh}} 0.4 \text{ Hz}, \text{C}_5 \text{H}_4 \text{Si}\right)\right)$ and 18.44 (d, J_{SiRh} 15.2 Hz, RhSi).

 C_2H_4) and 0.30 (d, 18H, J_{RhH} 0.4, J_{SiH} 6 Hz, SiMe₃); ¹³C(¹H) δ 94.0 **8,** 'H: *b* 4.87 (d, SH, *JR~H* 0.5 HZ, C~HS), 2.18 (d, 4H, JRhH 1.7 HZ, (d, J_{RhC} 2.4 Hz, CH) 37.2 (d, J_{RhC} 11.6 Hz, CH₂) and 9.66 (d, J_{RhC} 0.9, J_{SiC} 44.7 Hz, SiMe₃); ²⁹Si{¹H} δ 23.95 (d, J_{SiRh} 30.5 Hz, SiMe₃).

Scheme 1 Reactions of (Cp)Rh(C₂H₄)(H)(SiR₃), 1. *Reagents and conditions:* i , C_2H_4 ; ii , Me_2SO ; iii , $HSiR_3$, hv ; iv , $HSiR_3$, heat; v, hv , C_2H_4 .

Table 1²⁹Si NMR parameters for $(Cp)Rh(SiR₃)₃H$

$^{2}J_{\rm Si-H}/\rm{Hz}$	δ	$J_{\rm Rh-Si}/{\rm Hz}$
12.8	29.86	22.9
13.5	16.4	22.5
19.3	28.67	19.2 (SiEt ₃)
<3	17.2	33.3 (SiMe ₃)
24.3	28.83	17.9 (SiEt ₃)
6.0	17.11	26.6 (SiMe ₃)

silanes are ideal for NMR, since each element has a spin 1/2 nucleus. We have characterised the reaction products by 1H, ¹³C, ²⁹Si and sometimes ¹⁰³Rh NMR. The value of $2J_{Si-H}$, characteristic of the bonding of the silane ligands (> 20 **Hz** in the η^2 -SiH complexes), may be probed from the ²⁹Si spectrum or *via* the satellites in the ¹H spectrum.^{3.7} The photochemical reaction of 1 with R₃SiH yields 2. However, the thermal reaction generates $(Cp)Rh(SiR_3)_{3}H$ **5** $(5a R = Et, 5b R = Me)$ and ethane with **2** formed as a minor product (Scheme 1). The

Scheme 2 Fluxional motion of $(Cp)Rh(SiR₃)₃H$, **5** and **6**. i, η^2-Si-H rotation; ii, η^2 -interchange.

Fig. 1²⁹Si{¹H-INEPT} NMR spectrum showing the SiMe₃ region of products from the reaction of **la** with Me3SiD. Resonances for 5b, 6b and their deuteriated counterparts 5b-D and 6b-D each appear as doublets due to Rh coupling. The additional 1:1:1 triplet fine structure arises from Si-D coupling in $(Cp)Rh(SiMe₃)₃D$, 5b-D, the exchange product and $(Cp)Rh(SiMe₃)₂(SiEt₃)D$ **6b-D**. The $^{2}J_{Si-D}$ couplings are significantly smaller than those for the $SiEt₃$ group in 6b-D.

methyl product 5b is stable at room temperature, but its ethyl analogue $5a$ is thermally sensitive \ddagger These tris(trialkylsilyl) complexes are probably formed by trapping of (Cp)Rh(Et)- (SiR_3) by R₃SiH followed by elimination of ethane and oxidative addition of a second molecule of R_3 SiH (eqn. 1). 5**b** is stable at room temperature, but its ethyl
thermally sensitive.‡ These tris(trialkylsilyl)
probably formed by trapping of (Cp)Rh(Et)-
iiH followed by elimination of ethane and
ion of a second molecule of R₃SiH (e

$$
(Cp)Rh(C2H4)(SiR3)H \longrightarrow (Cp)Rh(Et)(SiR3) \xrightarrow{R3SiH}
$$

$$
(Cp)Rh(Et)(H)(SiR3)2 \xrightarrow{-C2H6}
$$

R₃SiH

$$
(Cp)Rh(SiR3)2 \xrightarrow{R_3 3H1} (Cp)Rh(SiR3)3H (1)
$$

The M^V complexes $(\eta^5$ -C₅Me₅)Rh(H)₂(SiEt₃)₂ and (η^5 - C_5Me_5 Ir(H)₃(SiMe₃), have been shown to adopt piano-stool configurations,² usually a rigid structure.⁸ If this were true of 5b, we would expect the SiMe₃ group *trans* to the hydride to be shifted relative to the two mutually *cis* SiMe₃ groups. However, the equivalence of all the ${}^{1}\text{H}$, ${}^{13}\text{C}$ and ${}^{29}\text{Si}$ NMR resonances of the silyl groups, even at 197 K, requires either that this complex adopts a trigonal bipyramidal structure, or that it undergoes a rapid exchange process.§ Gilbert *et al.*

observed such an exchange in the trihydrides *(75-* C_5Me_5 IrH₃(SnR₃) (R = Ph and Me) and ($\eta^5-C_5Me_5$)IrH₃- $(SiMe₃)$, but did not postulate an exchange mechanism.

As a further probe of the structure we synthesised the two mixed silyl complexes $(Cp)Rh(SiEt₃)₂(SiMe₃)H$ 6a and $(Cp)Rh(SiMe₃)₂(SiEt₃)H$ 6b by addition of the appropriate 'cross silane' to **1.7** In these complexes, the two different silyl groups within the same molecule exhibit very different $2J_{Si-H}$ couplings, with the coupling to the $SIEt₃$ group far exceeding those to the SiMe_3 groups (Table 1 and Fig. 1). However, the pairs of SiEt₃ groups in 6a still retain identical 1 H, 13 C and 29 Si resonances; the same applies to the SiMe_3 groups of 6b. The spectra of both *5* and 6 can be understood if we postulate that each contains an η^2 -silane group and that a dynamic process places different silyl groups in the η^2 -position (see Scheme 2). In keeping with this hypothesis, the mean coupling $2J_{\text{Si-H}}$ of 6b is almost identical to that of 5. The values for $2J_{Si-H}$ of the mixed complexes show a strong preference for placing an ethyl group rather than a methyl group in the η^2 -position, in accordance with Schubert's predictions.^{2,7} The M^V com-
plexes $\left[\{HB(3,5-Me_2pz)\}Rh(H)_2(H_2)\right]$ and $\left[\{PPh_3\}^2\right]$ plexes $\left[{H B(3, 5-Me_2pz)_3} \right] \hat{Rh}(H_2(H_2))$ and $Ir(H)₂(Et₃SiH)₂$ ⁺ involve similar non-classical bonding interactions.⁹

Complex *5* also undergoes two distinct reactions in the presence of an excess of silane depending on the mode of activation. The photochemical product is $(\overline{Cp})Rh(H)₂(SiR₃)₂$ **2,** while the thermal product is its ring-substituted analogue $(C_5H_4SiR_3)Rh(H)_2(SiR_3)_2$ 7 (7a R = Et, 7b R = Me). Whereas 7a is formed from 5a at 298 K, the corresponding reaction of 5b occurs only above 373 K. Direct thermal reaction of $(Cp)Rh(C_2H_4)$ ₂ with Et₃SiH at 383 K provides an

 $\text{\$ Complexes of the type } CpMo(CO)₂(L)R' (L = PR₃, P(OR)₃, R'$ alkyl, H, halide) adopt piano-stool (square pyramidal) structures, but are fluxional. A trigonal bipyramidal intermediate is postulated in the exchange process (J. W. Faller and A. **S.** Anderson, *J. Am. Chem.* Soc., 1970, **92,** *5852).*

fl Simple silane exchange complicates this reaction and leads to the generation of *5* in addition to **6.**

alternative route to **7a**. Unlike other silyl group migrations,¹⁰ the migration observed for *5* requires no proton-abstracting agent.¹¹ Although we have not yet established the mechanism of conversion of *5* into **7,** we surmise that the thermal reaction of $(Cp)Rh(C_2H_4)$ ₂ with R₃SiH generates 7 *via* 1 and then 5.

Preliminary studies of the effect of irradiation on **5b** reveal that it is highly photosensitive. In the presence of ethene the major photolysis product is the new rhodium(III) complex $(Cp)Rh(C₂H₄)(SiMe₃)₂$ **8** resulting from Me₃SiH elimination and ethene coordination.[#]

These experiments provide an insight into the reaction routes open to a metal(ethene)silyl(hydride) complex (Scheme 1), illustrating how simple ligand dissociation from **1** predominates photochemically, while the thermal reactions reflect competition between $[1,3]$ H-shifts, ethene dissociation and reductive elimination of trialkylsilane. The characterisation of the highly hindered RhV complex (Cp)Rh(SiR3)3H *5* poses stereochemical problems similar to those for trihydridel hydrido (dihydrogen) complexes.12 The use of different silyl groups as in **6,** provides evidence for the presence of an q2-silane ligand, which undergoes dynamic rearrangement. This may also prove to be the key to the structures of *5* and the fluxional iridium complexes.2 Complex *5* also reacts with an excess of silane: a silyl migration leads to the formation of $(C_5H_4SiR_3)Rh(SiR_3)_2(H)_2$, 7 in the thermal reaction, whereas the unsubstituted product $(C_5H_5)Rh(SiR_3)_2(H)_2$ **2** is obtained by photolysis.

We are grateful to Dr B. E. Mann for recording $103Rh NMR$ spectra, and to Dow Corning Ltd, British Gas, The Royal Society, the SERC, and the EEC for support. We also appreciated extensive discussions with Professor P. M. Maitlis.

Received, 28th August 1990; Corn. 01038841

References

- 1 **S.** B. Duckett, D. M. Haddleton, **S. A.** Jackson, R. N. Perutz, M. Poliakoff and R. K. Upmacis, *Organornetallics,* 1988, **7,** 1526.
- 2 M. J. Fernandez, P. M. Bailey, P. 0. Bentz, J. H. Ricci, J. Ruiz, T. F. Koetzle and P. M. Maitlis, *J. Am. Chem. Soc.,* 1984, **106,** 5458; M. J. Fernandez and P. M. Maitlis, *J. Chem. Soc.*, *Chem. Commun.,* 1982,310; J. Ruiz, B. E. Mann, C. M. Spencer, B. F. Taylor and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1987, 1963; T. M. Gilbert, F. J. Hollander and R. G. Bergman, *J. Am. Chem.* **SOC.,** 1985, **107,** 3508; T. M. Gilbert, R. G. Bergman, *Organometallics,* 1983, **2,** 1458; R. Tanke and R. H. Crabtree, *J. Chem. SOC., Chem. Commun.,* 1990, 1056.
- 3 U. Schubert, G. Scholz, J. Miiller, K. Ackermann, B. Worle and R. F. D. Stansfield, *J. Organomet. Chem.,* 1986, **306,** 303 and references cited therein; H. Rabaa, **J.-Y.** Saillard and U. Schubert, J. *Organornet. Chem.,* 1987, **330,** 397.
- 4 B. **J.** Burger, B. D. Santarsiero, M. **S.** Trimmer and J. E. Bercaw, *J. Am. Chem. SOC.,* 1988, **110,** 3134; M. Brookhart and D. M. Lincoln, *J. Am. Chem. Soc.*, 1988, 110, 8719.
- 5 **S.** T. Belt, **S.** B. Duckett, D. M. Haddleton and R. N. Perutz, *Organornetallics,* 1989, **8,** 748.
- 6 Compare **(qs-CSMeS)Rh(Me2SO)(Me)2: A.** V. Miguel, K. Isobe, B. E. Mann, M. Gomez, B. F. Taylor and P. M. Maitlis, *Organometallics,* 1983, **2,** 1724.
- 7 U. Schubert, *Adv. Organomet. Chem.,* 1990, **30,** 151.
- 8 P. Kubacek, R. Hoffmann and Z. Havlas, *Organometallics,* 1982, **1,** 180.
- 9 U. E. Bucher, T. Lengweiler, D. N. W. von Philipsborn and L. M. Venanzi, *Angew. Chem., Int. Ed. Engl.,* 1990,29,548; X.-L. Luo and R. H. Crabtree, *J. Am. Chem.* **SOC.,** 1989, **111,** 2527.
- 10 K. H. Pannell, **S.** P. Vincenti and R. C. Scott, *Organometallics,* 1987, **6,** 1593; **J.** Cervantes, **S.** P. Vincenti, R. N. Kapoor and K. H. Pannell, *Organometallics,* 1989, **8,** 744; P. Pasman and J. J. M. Snel, *J. Organomet. Chem.,* 1986, **301,** 329.
- 11 U. Schubert and **A.** Schenkel, *Chem. Ber.,* 1988, **121,** 939.
- 12 M. D. Heinekey, **J.** M. Millar, T. F. Koetzle, N. G. Payne and K. W. Zilm, *J. Am. Chem. SOC.,* 1990, **112,** 909; J. **K.** Burdett, **J.** R. Phillips, M. R. Pourian, M. Poliakoff, **J.** J. Turner and R. Upmacis, *Inorg. Chem.,* 1987, **26,** 3054.