The Identification of the Classical Donor–Acceptor Complex H_3N –BF₃ in the Gas Phase

A. C. Legon* and H. E. Warner

Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK

The $J = 1 \leftarrow 0$ rotational transitions of the four isotopomers $H_3^{14}N^{11}BF_3$, $H_3^{14}N^{10}BF_3$, $H_3^{15}N^{11}BF_3$ and $H_3^{15}N^{10}BF_3$ of the archetypal donor-acceptor complex formed between ammonia and boron trifluoride have been detected with a pulsed-nozzle, Fourier-transform microwave spectrometer; by using a fast-mixing nozzle, H_3NBF_3 has been isolated in collisionless expansion before condensation can occur, thereby allowing the first detection of this elusive species in the gas phase.

By virtue of its preparation in 1809 by Gay-Lussac¹ and in 1812 by Davy² as a solid adduct, H₃NBF₃ has been referred to as the first known coordination compound of any element.³ H₃NBF₃ is also the simplest of the class of compounds R₃BNH₃ used by G. N. Lewis to illustrate the dative bond.⁴ All of this allows H₃NBF₃ to be described as the archetypal donor-acceptor complex. Curiously, it has so far eluded detection in the vapour phase. On mixing NH₃ and BF₃ gases at room temperature in a fast flow system, Lovas and Johnson⁵ were able to detect only the microwave spectrum of the planar molecule H₂N=BF₂ weakly and found that heating to 140 °C the white solid formed on mixing the gases also gave the same spectrum. An earlier attempt by Prokhorov and Shipulo⁶ to observe the rotational spectrum of H₃NBF₃ in the vapour above the heated crystalline solid was unsuccessful. More recently, Kroto and McNaughton7 examined the photoelectron spectrum of the vapour produced from the solid adduct at 140 °C but again only H₂NBF₂ was detected. This evidence demonstrates that although NH3 and BF3 react rapidly on mixing to produce a solid condensate, it is difficult to generate H₃NBF₃ in spectroscopically detectable concentrations in the vapour by heating the solid and only H₂N=BF₂ appears to be observable. In fact, it has been suggested8 that solid H₃NBF₃ undergoes irreversible decomposition when heated above 125 °C. On the other hand, H_3NBF_3 has been detected by matrix isolation methods.⁹ One possible way to observe H_3NBF_3 in the gas phase is to probe spectroscopically a nascent mixture of NH_3 and BF_3 in the short period before the solid is precipitated.

We report the first identification of the classical donoracceptor complex H₃NBF₃ in the gas phase. It was detected through its rotational spectrum with a pulsed-nozzle, Fouriertransform microwave spectrometer¹⁰ employing a fast-mixing nozzle.11.12 The fast-mixing nozzle consisted of a pair of concentric tubes venting into the Fabry-Pérot cavity at the same point. A continuous stream of a gas mixture composed of 70% BF₃ (Matheson Inc.) in argon at a stagnation pressure of 1 atm issued into the vacuum chamber from the 0.3 mm diameter central tube while the other component, 2% NH₃ (Argo International) in argon at a stagnation pressure of 3 atm, was pulsed into the 0.7 mm diameter outer tube from a General Valve Corp. Series Nine solenoid valve. Molecules of H₃NBF₃ formed at the point of mixing travel at supersonic speeds and within 10 nozzle diameters (*i.e.* a few millimetres) are in collisionless expansion. Consequently, species that survive clustering and condensation in the first ca. 10

microseconds will persist and can be characterized spectroscopically in effective isolation in the usual way.¹⁰

We first established that the $J = 1 \leftarrow 0$ transition of H₂NBF₂ centred at 14483 MHz⁵ was not present in the supersonically expanded gas emerging from the nozzle. Apparently, H₂NBF₂ is not formed in the gas-phase reaction of NH₃ and BF₃ on the timescale of *ca*. 10 microseconds before collisionless expansion sets in. Then, an extensive search revealed a highly congested group of approximately 20 weak transitions falling within a range of 2 MHz centred on 9297 MHz which required both NH₃ and BF₃.

This set of lines was eventually assigned as the $J = 1 \leftarrow 0$ transitions of the two isotopomers $H_3^{14}N^{11}BF_3$ and $H_3^{14}N^{10}BF_3$, accidentally coincident in frequency because the B atom lies virtually on the molecular centre of mass. The large number of components arises not only because each J = $1 \leftarrow 0$ transition has associated with it a complicated hyperfine structure generated by quadrupole coupling of the ¹⁴N (I = 1) and ¹¹B (I = 3/2) or ¹⁰B (I = 3) nuclear spins to the rotational angular momentum but also because each hyperfine component is in turn split into a doublet of separation approximately 60 kHz. There is also evidence of the partially resolved effects of spin-spin splitting arising from the H and F nuclei but these were ignored in the analysis given below.

We shall show that H_3NBF_3 has an N-B bond only slightly longer than the C-C bond in the isoelectronic molecule CH₃CF₃. In symmetric-top molecules, like CH₃CF₃, rotational transitions in the ground torsional state can exhibit small A,E splittings but only by virtue of high order vibration-torsion-rotation interactions.¹³ The threefold barrier $V_3 = 14.6$ kJ mol⁻¹ in CH₃CF₃ is sufficiently high¹⁴ that no A,E splitting can be resolved in the $J = 1 \leftarrow 0$ transition even in a molecular beam.¹⁵ A reduced barrier is expected in H₃NBF₃ and would lead to an increased A,E splitting. The doubling of approximately 60 kHz is assigned to this effect and is similar in magnitude to that observed¹³ in CH₃SiH₃, for which $V_3 = 7.09$ kJ mol⁻¹. Presumably, a similar barrier height for H₃NBF₃ is thereby implied.

The nuclear quadrupole hyperfine structure for each state A and E of each isotopomer was fitted separately in a conventional iterative least-squares analysis in which only diagonal matrix elements of the two-quadrupole Hamiltonian H = $H_{Q(N)} + H_{Q(B)}$ in the coupled basis $\mathbf{I}_N + \mathbf{J} = \mathbf{F}_1$, $\mathbf{F}_1 + \mathbf{I}_B = \mathbf{F}_1$ were retained.¹⁶ Unperturbed line-centre frequencies v_0 and the various nuclear quadrupole coupling constants $\chi(^{14}N), \chi(^{11}B)$ and $\chi(^{10}B)$ so obtained are collected in Table 1. To confirm the spectral assignment, the isotopomers H₃¹⁵N¹¹BF₃ and H₃¹⁵N¹⁰BF₃ were also investigated, with the aim of simplifying the spectrum by removing ¹⁴N coupling effects. A group of transitions observed in a 1 MHz range of frequencies centred on 9098 MHz was assigned to the interpenetrating B-nuclear quadrupole hyperfine components of the $J = 1 \leftarrow 0$ A, E pair of torsional ground-state transitions of $H_3^{15}N^{11}BF_3$ and $H_3^{15}N^{10}BF_3$. Values of v_0 and $\chi(B)$ obtained for the ¹⁵N species are included in Table 1.

The spectral congestion and consequent overlap of transitions result in errors in the coupling constants that are larger than usual, especially for the weaker ¹⁰B species, but nevertheless the $\chi(B)$ of H₃¹⁴NBF₃ and H₃¹⁵NBF₃ agree within experimental error (Table 1). Moreover, the ratios $\chi(^{10}B): \chi(^{11}B) = 2.04(9)$ (A) and 2.07(5) (E) for the H₃¹⁴NBF₃ isotopomers are in satisfactory agreement with the value 2.084(2) accepted for the ratio of the B nuclear electric quadrupole moments.¹⁷ The corresponding ratios for the ¹⁵N isotopomers are 2.01(7) (A) and 2.11(4) (E), respectively.

Table 1 Unperturbed frequencies of $J = 1 \leftarrow 0$ transitions and nuclear quadrupole coupling constants for the ground state of four isotopomers of H₃NBF₃

Isotopomer	Torsional state ^a	υ ₀ /MHz	χ(¹⁴ N)/MHz χ(B)/MHz	
H ₃ ¹⁴ N ¹¹ BF ₃	A E	9297.269(1) 9297.330(1)	-2.301(6) -2.324(3)	1.21(2) 1.128(7)
$H_{3}^{14}N^{10}BF_{3}^{b}$	A E	9297.139(4) 9297.204(3)	-2.31(2) -2.36(1)	2.47(7) 2.33(5)
$H_3^{15}N^{11}BF_3$	A E	9097.934(2) 9098.001(1)	_	1.187(10) 1.148(3)
H ₃ ¹⁵ N ¹⁰ BF ₃ ^b	A E	9098.172(7) 9098.237(3)	_	2.39(6) 2.42(3)

^{*a*} Each ground state transition is split into a doublet by high order vibrational-rotational-torsional effects. The assignment of the A label to the lower frequency component follows ref. 13. ^{*b*} The congestion of the spectra coupled with the lower abundance of ¹⁰B led to a poorer determination of the spectroscopic constants for the ¹⁰B isotopomers.

were outside the high-sensitivity range of our spectrometer and were not available to confirm the symmetric-top nature of the complex. Nevertheless, the proposed arrangement seems likely in view of the established geometries of H_3NBH_3 ,¹⁸ Me_3NBH_3 ¹⁹ and Me_3NBF_3 .²⁰

Given that the B and N nuclei lie on the $C_3(z)$ axis, the distance r(N-B) is available as follows. The r_s -coordinate z_N of ¹⁴N in H₃¹⁴N¹¹BF₃ is straightforwardly available from the change in B_0 on ¹⁵N substitution through Kraitchman's equation²¹ for substitution on the axis of a symmetric top molecule. Ignoring the effects of centrifugal distortion, we have $B_0 = \frac{1}{2}v_0$ ($J = 1 \leftarrow 0$) and obtain $z_N = 1.555$ Å for both A and E states of H₃¹⁴N¹¹BF₃ using Kraitchman's equation. The tiny changes in v_0 on substitution of ¹⁰B by ¹¹B (125 kHz for H₃¹⁴NBF₃ and -237 kHz for H₃¹⁵NBF₃) reveal that the B atom lies very close to the centre of mass in H₃¹⁴NBF₃ but on the opposite side from N. Detailed arguments[†] allow the estimate $z_B = -0.03(3)$ Å. The implication of this analysis is that r(N-B) = 1.59(3) Å.

The distance r(N-B) in H₃NBF₃ can be compared with 1.60(2) Å from the X-ray diffraction study of the solid condensate²² and with 1.68 Å obtained in *ab initio* calculations.²³ The molecules H₃NBF₃ and H₂NBF₂ are isoelectronic with H₃CCF₃ and H₂CCF₂, respectively. The N-B single and N=B double bond lengths of 1.59(3) and 1.402(24) Å⁵ are consistently longer than the corresponding C-C bond lengths of 1.492²⁴ and 1.315 Å,²⁵ respectively, of the carbon analogues. If H₃NBF₃ is isostructural, as well as isoelectronic, with H₃CCF₃, the N and B nuclei would sit at the centre of an approximately tetrahedral environment, with only a small electric field gradient at each along the symmetry axis *z*. The

The observed nuclear quadrupole hyperfine patterns in the $J = 1 \leftarrow 0$ transitions of the isotopomers $H_3^{14}N^{11}BF_3$, $H_3^{14}N^{10}BF_3$, $H_3^{15}N^{11}BF_3$ and $H_3^{15}N^{10}BF_3$ together with the small A,E splittings attributed to internal rotation are consistent with a symmetric-top $C_{3\nu}$ arrangement of the nuclei of the type H_3NBF_3 . Unfortunately, the $J = 2 \leftarrow 1$ transitions

[†] Usually, the effect on the rotational constant of an isotopic substitution can be described on the sum of two parts. An increase of mass will decrease the equilibrium rotational constant but usually decreases the magnitude of the zero-point contribution to B_0 , which is negative in sign. If B is very close to the centre of mass, the latter contribution will dominate and lead to an increase in v_0 (and presumably B_0), as observed in the $J = 1 \leftarrow 0$ transitions of H₃¹⁴NBF₃ when ¹¹B replaces ¹⁰B. For the isotopomers containing ¹⁵N, on the other hand, $\Delta \upsilon_0$ is now negative, presumably because the first contribution is larger. These facts suggest that the B atom lies very close to the centre of mass in H314N11BF3 but probably on the opposite side from N. Substitution of ¹⁵N moves the centre of mass towards N, increases the magnitude of $z_{\rm B}$ and hence of the equilibrium value of ΔB so that it exceeds the contribution due to zero-point changes. Experience shows that changes of the magnitude observed mean that B lies within 0.05 Å of the centre of mass and hence we choose $z_{\rm B}$ = -0.03 (3) Å.

relatively small magnitudes of $\chi(^{14}N)$ and $\chi(B)$ (Table 1) are consistent with such an assumption. Certainly, $\chi(^{14}N)$ is small compared with $\chi_0(^{14}N) = -4.09 \text{ MHz}$ in free $^{14}NH_3$.²⁶ A more quantitative interpretation of $\chi(^{14}N)$ and $\chi(B)$ to give the N-B bond order must await a detailed knowledge of the geometry at N and B. Further work is in progress.

We thank the Science and Engineering Research Council for support of this work and Dr A. P. Cox for helpful comments.

Received, 14th August 1991; Com. 1/04261K

References

- 1 J. L. Gay-Lussac and J. L. Thénard, Mem. de Phys. et de Chim de la Soc. d'Arcueil, 1809, 2, 210.
- 2 J. Davy, Phil. Trans., 1812, 102, 365. 3 N. N. Greenwood, in Comprehensive Inorganic Chemistry, Pergamon, Oxford, 1973, vol. 1, p. 666.
- 4 G. N. Lewis, Valence and the Structures of Atoms and Molecules, The Chemical Catalog Company Inc., New York, 1923, p. 98.
- 5 F. J. Lovas and D. R. Johnson, J. Chem. Phys., 1973, 59, 2347.
- 6 A. M. Prokhorov and G. P. Shipulo, Opt. Spectrosc., 1960, 8, 218.
- 7 H. W. Kroto and D. McNaughton, J. Chem. Soc., Dalton Trans., 1985, 1767.
- 8 A. W. Laubengayer and G. K. Condike, J. Am. Chem. Soc., 1948, 70, 2274.
- 9 R. L. Hunt and B. S. Ault, Spectros. Int. J., 1982, 1, 31.

- 10 A. C. Legon, Annu. Rev. Phys. Chem., 1983, 34, 275.
- 11 A. C. Legon and C. A. Rego, J. Chem. Soc., Faraday Trans., 1990, 86, 1915.
- 12 T. Emilsson, T. D. Klots, R. S. Ruoff and H. S. Gutowsky, J. Chem. Phys., 1990, 93, 6971.
- 13 W. L. Meerts and I. Ozier, J. Mol. Spectrosc., 1982, 94, 38.
- 14 H. T. Minden and B. P. Dailey, Phys. Rev., 1951, 82, 338.
- 15 W. L. Meerts and I. Ozier, Chem. Phys., 1991, 152, 241.
- 16 P. Thaddeus, L. C. Krisher and J. H. N. Loubser, J. Chem. Phys., 1964. 40, 257.
- 17 W. Gordy and R. L. Cook, Techniques of Organic Chemistry, Microwave Molecular Spectra, ed. A. Weissberger, Interscience, New York, vol. IX, 1970.
- 18 C. R. Thorne, R. D. Suenram and F. J. Lovas, J. Chem. Phys., 1983, 78, 167.
- 19 P. Cassoux, R. L. Kuczkowski, P. S. Bryan and R. C. Taylor, Inorg. Chem., 1975, 14, 126.
- 20 P. Cassoux, R. L. Kuczkowski and A. Serafini, Inorg. Chem., 1977, 16, 3005.
- 21 J. Kraitchman, Am. J. Phys., 1953, 21, 17.
- 22 J. L. Hoard, S. Geller and W. M. Cashin, Acta Crystallogr., 1951, 4. 396.
- 23 W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley Interscience, New York, 1986, p. 217.
- 24 L. F. Thomas, J. S. Heeks and J. Sheridan, Z. Elecktrochem., 1957, 61, 935.
- 25 V. W. Laurie and D. T. Pence, J. Chem. Phys., 1963, 38, 2693.
- 26 M. D. Marshall and J. S. Muenter, J. Mol. Spectrosc., 1981, 85, 322.