Acyclic Stereocontrol Based on Nonchelation-controlled Ene Reactions with a-Haloaldehydes

Koichi Mikami," Teck-Peng Loh and Takeshi Nakai*

Department *of* Chemical Technology, Tokyo Institute *of* Technology, Ookayama, Meguro-ku, *Tokyo 152,* Japan

Aluminium(iii)-promoted ene reactions with α -haloaldehydes are shown to exhibit a high *anti*-diastereofacial (non-chelation) selection or syn-diastereoselection to afford an efficient method for preparing stereochemically-defined β -haloalcohols including the 22R-hydroxy side chain unit in steroids.

The ene reaction involving carbonyl compounds, aldehydes in particular, as enophiles (carbonyl-ene reaction) has currently emerged as a new tool for acyclic stereoselection.1 However, the types of aldehyde enophile explored thus far have been limited.2 Herein we report a new type of Lewis acid-promoted ene reaction using α -bromo- or α -chloro-aldehydes as enophiles (haloaldehyde-ene reaction) which proceeds at relatively low temperatures under effective nonchelation control with high syn-diastereoselectivity.
The reactions of α -bromopropanal **1** and isobutene **2a** (2)

equiv.) at -78 °C in dichloromethane (Scheme 1) were found to give the ene products **3a** and **4a** in good yields, using organoaluminium reagents (1 equiv.) as the Lewis acid (Table 1). The *anti* (nonchelation) stereoisomer **3a** was obtained as the major product, the ratio depending on the nature of the Lewis acid employed. Of special value is the $Me₂AlCl$ promoted reaction which provides **3a** in relatively high selectivity. The structural assignment of the ene products **3** and **4** was based on conversion to the epoxides *5* and **6;** the epoxide *6* derived from the minor ene product **4** showed a relatively strong NOE between the methylene and methyl

* All reactions were carried out on a 1 mmol scale under argon. *b* The isomer ratio was determined by l3C NMR and HPLC analyses. **C** Yield of isolated product after silica gel chromatography. d Ar = 2,4,6-Me₃- C_6H_2 .

protons. The *anti*-diastereofacial selectivity thus observed is reasonably explained in terms of Felkin-Anh's or Cram's dipolar model. 3 Thus, this new type of ene reaction is proved

a; $R^1 = H$, $R^2 = Me$ **b;** R^1 , R^2 = -[CH₂]₅ $c; R^1 = H, R^2 = Ph$

Scheme 1 *Reagents and conditions:* i , AIL_n , CH_2Cl_2 , -78 °C; ii , NaH, dimethylformamide

Scheme 2 *Reagents and conditions:* i, ClCH₂CHO **8**, Me₂AlCl, CH₂Cl₂, -78 °C; ii, NaH; iii, H₂, PtO₂

Next, we examined the simple diastereoselection of the haloaldehyde-ene reaction in the context of steroid side chain synthesis.⁴ Thus, the reaction of the easily available steroidal alkene **75** and chloroacetaldehyde **8** (1 equiv. each) with Me₂A1C1 was found to show an extremely high level of simple syn-diastereoselection. The *20S,22R-syn* product **9** was obtained as a single stereoisomer in 73% yield. The stereochemistry was assigned on the basis of the 13C and 1H NMR analyses,6 after conversion to the steroidal epoxide **10,** a key intermediate of $22R-\alpha$ -hydroxylated steroid side chains.⁶

Received, 3rd September 1990; Com. 01039976

References

- 1 Reviews: K. Mikami, M. Terada, M. Shimizu and T. Nakai, *J. Synth. Org. Chem., Jpn.,* 1990,48,292; B. B. Snider, *Acc. Chem.* Res., 1980, 13, 426.
- 2 Chloral-ene reactions: *(a)* G. B. Gill and B. Wallace, *J. Chem. SOC., Chem. Commun.,* 1977, *382;* J. P. Benner, G. B. Gill, S. J. Parrott, B. Wallace andM. J. Begley, *J. Chem.* SOC., *Perkin Trans. 1,* 1984, 315; *(b)* K. Maruoka, **Y.** Hoshino, T. Shirasaka and H. Yamamoto, *Tetrahedron Lett.,* 1988, 29, 3967. Glyoxylate-ene reactions: (c) 0. Achmatowicz, Jr., and B. Szechner, *J. Org. Chem.,* 1972, **37,** 964; *(d)* B. B. Snider and **J.** W. van Straten, *J. Org. Chem.,* 1979,44,3567; *(e)* J. K. Whitesell, *Acc. Chem. Res.,* 1985,18,280; K. Mikami, T.-P. Loh and T. Nakai, *Tetrahedron Lett.,* 1988, 29, 6305; (g) K. Mikami, M. Terada and T. Nakai, *J. Am. Chem. SOC.,* 1990,112,3949. Propynal-ene reactions: *(h)* K. Mikami, T.-P. Loh and T. Nakai, *J. Chem. Soc., Chem. Commun.*, 1988,1430; *(i)* K. Mikami, T.-P. Loh and T. Nakai, *J. Am. Chem. Soc.*, 1990, 112, 6737. Alkoxyaldehyde-ene reactions: (j) K. Mikami and T.-P. Loh, *Tetrahedron Asymmetry,* 1990, **1,** 13. Aminoaldehyde-ene reactions: *(k)* K. Mikami, M. Kaneko, T.-P. Loh, M. Terada and T. Nakai, *Tetrahedron Lett.,* 1990, 31, 3909.
- 3 N. T. Anh, *Top. Curr. Chem.,* 1980, **88,** 145.
- 4 Reviews: D. M. Piatak and J. Wicha, *Chem. Rev.,* 1978,78, 199; J. Redpath and F. Zeelen, *Chem. Soc. Rev.*, 1983, 12, 75; R. Pardo and M. Santelli, *Bull. Chem. Soc. Fr.*, 1985, 99; K. Mori, *J. Synth. Org. Chem., Jpn.,* 1985, 43, 849.
- *5* N. R. Schmuff and B. M. Trost, *J. Org. Chem.,* 1983, 48, 1404.
- 6 For the synthesis of the $20S$, $22R$ -epoxide 10 and its $22S$ -epimer, and their transformations to the 22R-hydroxycholesterol and 22Shydroxylated ecdysone side chains respectively, see: M. Koreeda and D. J. Ricca, *J. Org. Chem.,* 1986, 51, 4090. Also see: K. Mikami, K. Kawamoto and T. Nakai, *Tetrahedron Lett.,* 1985,26, 5799 and ref. 2f.