121

Synthesis of the Ruthenium Imido Complexes, $[Ru(\eta-C_6H_6)(N-2,6-R_2C_6H_3)]_2$ (R = Prⁱ or Me), and the Crystal Structure of $[Ru(\eta-C_6H_6)(N-2,6-Pr^i_2C_6H_3)]_2$

Terence P. Kee, Lee Y. Park, Jennifer Robbins and Richard R. Schrock*

Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Ruthenium imido complexes, $[(\eta-C_6H_6)Ru(N-2,6-R_2C_6H_3)]_2$ ($R = Pr^i \mathbf{1}$, Me $\mathbf{2}$), have been synthesised by the room temperature reaction of $[(\eta-C_6H_6)RuCl_2]_2$ with 2 equiv. of LiNH(2,6-R_2C_6H_3) and $\mathbf{1}$ has been shown by single-crystal X-ray diffraction to be a symmetrical, imido-bridged dimer containing a bent Ru_2N_2 bridge.

The imido ligand has received considerable attention in recent years, primarily because of its ability to stabilise high metal oxidation states by multiple electron donation.¹ However, relatively few studies have focused on imido complexes of the later transition elements.² Recently we have been studying complexes containing the sterically demanding 2,6-diisopropylphenylimido (N-2,6-Pri₂C₆H₃) ligand coordinated to Mo, W, Re and Os^{3a-d} and have demonstrated its utility in synthesising active, well-defined, alkene metathesis catalysts.⁴ In order to extend our studies to other, later transition metals we sought access to imido complexes of ruthenium.⁵

Since $[(\eta-C_6H_6)MCl_2]_2$ (M = Ru, Os) complexes are isoelectronic with $[(C_5Me_5)MCl_2]_2$ (M = Rh, Ir) complexes, we felt that they might react to give complexes analogous to recently discovered^{2d} (C_5Me_5)M(NBu^t) complexes [(eqn. (1)]. This strategy was successful employing aryl-substituted amides but not LiNHBu^t, which gives an intractable mixture of products under analogous conditions. Although formation of 1 and 2 is quantitative by NMR, the isolated yields (not yet optimised) are moderate (48% 1, 77% 2) due to difficulties in separating the aniline byproducts. We believe that (η -C₆H₆)RuCl(NHAr) is likely to be formed first and then either dehydrohalogenated by the second equiv. of LiNHAr or attacked to form $(\eta$ -C₆H₆)Ru(NHAr)₂, which then loses NH₂Ar.

$$[(\eta-C_6H_6)RuCl_2]_2 + 4LiNHAr \xrightarrow{Et_2O} 2(\eta-C_6H_6)Ru(NAr) + 4LiCl + 2NH_2Ar \quad (1)$$

Ar = 2,6-Prⁱ₂C₆H₃1, 2,6-Me₂C₆H₃2

Both 1 and 2 are deep-green, air-sensitive, crystalline compounds which dissolve readily in aromatic and ethereal solvents, but significantly less readily in pentane. Analytical and spectroscopic data \dagger for 1 and 2 support the proposed

⁺ Selected spectroscopic data: 1 ¹H NMR (C_6D_6) δ 7.3–7.25 (m, 6H, Ar-H_{m/p}), 4.42 (s, 6H, C_6H_6), 3.58 (sp, J 6.8, 4H, Pri-CH), 1.31 (d, J 6.8, 24H, Pri-CH₃). ¹³C{¹H} NMR (C_6D_6) δ 166.99 (C_{ipso}), 137.23 (C_o), 123.55 ($C_{p/m}$), 123.18 ($C_{p/m}$), 78.69 (C_6H_6), 26.83 (Pri-CH), 25.48 (Pri-CH₃). Mass spectrum (EI) m/z 354, M⁺, ¹⁰²Ru). **2** ¹H NMR (C_6D_6) δ 7.3–7.1 (m, 6H, Ar-H_{m/p}), 4.26 (s, 6H, C_6H_6), 2.27 (s, 6H, CH₃). ¹³C{¹H} NMR (C_6D_6) δ 169.45 (C_{ipso}), 125.61 ($C_{m/p}$), 122.17 ($C_{m/p}$), 79.13 (C_6H_6), 19.30 (CH₃). Mass spectrum (EI) m/z 597, M⁺, ¹⁰²Ru). Satisfactory elemental analyses have been obtained for **1** and **2**.

Fig. 1 Two views of the structure of $[Ru(\eta-C_6H_6)(N-2,6-Pri_2C_6H_3)]_2$. (The isopropyl methyl groups have been omitted from the bottom view.)

composition. Mass spectra of 1 reveal a peak at m/z 354 corresponding to $[(\eta-C_6H_6)Ru(N-2,6-Pri_2C_6H_3)]^+$, while a mass spectrum of 2 shows clearly a peak for a dimer at m/z 596.

A single-crystal X-ray diffraction study of 1[‡] reveals that the complex is a dimer with symmetrically bridging imido ligands (Fig. 1). The ruthenium atoms are separated by 2.777(3) Å, a distance that is significantly shorter than that found in $[(\eta - C_5 H_5)_2 Ru_2(OMe)_2, 6 2.961(1) Å]$ and within the range observed for Ru-Ru single bonds (ca. 2.74-2.86 Å).⁶ The Ru-N distances are identical [Ru(1)-N(1) = 1.96(1) Å;Ru(1)-N(2) = 1.97(1) Å]. The aryl planes are oriented approximately perpendicular to their respective Ru₂N planes and the coordination around each nitrogen atom is planar, suggesting that the nitrogen lone pairs are involved in delocalised bonding between metal centres. Most significant perhaps is the bent M_2N_2 bridge [dihedral angle Ru(1)-Ru(2)- $N(1)/Ru(1)-Ru(2)-N(2) = 128.76^{\circ}$, a feature that is often associated with d^n systems where *n* is odd, and one that results in metal-metal bonding.⁷ When n is even, the requirement for M-M bond formation is less stringent and a planar bridge is normally observed.⁸ Exceptions are $Rh_2Cl_2(CO)_4^9$ and (η -

Fig. 2 A description of the bonding in the Ru_2N_2 bridge in 1

 $C_5H_5)_2Ru_2(OMe)_2$.⁶ In these cases *ab initio* calculations have suggested that no M–M bond is formed and that bending is the result of second order Jahn–Teller effects.^{6a} A similar explanation may be appropriate for 1, where, upon bridge bending, the filled, π -bonding molecular orbital illustrated (Fig. 2) is significantly stabilised with respect to a planar Ru_2B_2 arrangement. Thus, the relatively short Ru–Ru separation may primarily be a result of the short Ru–N bond lengths. We believe **2** to possess a similar dimeric structure in the solid state on the basis of mass spectral data mentioned above.

Preliminary reactivity studies suggest that 1 and 2 contain relatively non-labile arene ligands; for example, no exchange of C_6H_6 for C_6D_6 is observed after heating 1 to 75 °C for 9 h or upon photolysis with a medium pressure mercury lamp for 3 h. Although 2 does not react with tetrahydrofuran, pyridine or PMe₃ in refluxing benzene, it does react with HCl, water, dichloromethane, methyl iodide, and iodine. Full characterisation of these products is currently in progress.

We thank the National Science Foundation (CHE 88-22508) for support and the SERC for a NATO Postdoctoral Fellowship (to T. P. K.) We thank William M. Davis for X-ray data collection of **1**.

Received, 26th September; Com. 0/04361C

References

- W. A. Nugent and J. M. Mayer, *Metal-Ligand Multiple Bonds*, Wiley Interscience, New York, 1988; W. A. Nugent and B. L. Haymore, *Coord. Chem. Rev.*, 1980, **31**, 123.
 See for example; (a) D. W. Patrick, L. K. Truesdale, S. A. Biller
- See for example; (a) D. W. Patrick, L. K. Truesdale, S. A. Biller and K. B. Sharpless, J. Org. Chem., 1978, 43, 2628; (b) Y. Chi, L.-K. Liu, G. Huttner and L. Zsolnai, J. Organomet. Chem., 1990, 390, C50; (c) Y.-W. Ge and P. R. Sharp, J. Am. Chem. Soc., 1990, 112, 3667; (d) D. S. Glueck, F. J. Hollander and R. G. Bergman, J. Am. Chem. Soc., 1989, 111, 2719; (e) M. J. McGlinchey and F. G. A. Stone, Chem. Commun., 1970, 1265.
- 3 (a) J. S. Murdzek and R. R. Schrock, Organometallics, 1987, 6, 1373; (b) D. S. Williams, M. H. Schofield, J. T. Anhaus and R. R. Schrock, J. Am. Chem. Soc., 1990, 112, 6728; (c) A. D. Horton and R. R. Schrock, Polyhedron, 1988, 7, 1841; (d) J. T. Anhaus, T. P. Kee, M. H. Schofield and R. R. Schrock, J. Am. Chem. Soc., 1990, 112, 1642.
- 4 R. R. Schrock, R. DePue, J. Feldman, C. J. Schaverian, J. C. Dewan and A. H. Liu, *J. Am. Chem. Soc.*, 1988, **110**, 1423; R. R. Schrock, R. T. DePue, J. Feldman, K. B. Yap, D. C. Yang, W. M. Davis, L. Y. Park, M. DiMare, M. H. Schofield, J. T. Anhaus, E. Walborsky, E. Evitt, E. Kruger and P. Betz, *Organometallics*, 1990, **9**, 2262; R. R. Schrock, J. S. Murdzek, G. Bazan, J. Robbins, M. DiMare and M. O'Regan, *J. Am. Chem. Soc.*, 1990, **112**, 3875.
- 5 (a) J.-S. Song, S.-H. Han, S. T. Nguyen, G. L. Geoffroy and A. L. Rheingold, *Organometallics*, 1990, 9, 2386 and references therein;
 (b) P. A. Shapley, H. S. Kim and S. R. Wilson, *Organometallics*, 1988, 7, 928.
- 6 (a) S. D. Loren, B. K. Campion, R. H. Heyn, T. D. Tilley, B. E. Bursten and K. W. Luth, J. Am. Chem. Soc., 1989, 111, 4712; (b)
 U. Kolle, J. Kossakowski and R. Boese, J. Organomet. Chem., 1989, 378, 449.
- 7 H. Arzoumanian, A. Baldy, M. Pierrot and J.-F. Petrignani, J. Organomet. Chem., 1985, 294, 327.
- 8 (a) F. B. McCormick and W. B. Gleason, Acta. Crystallogr. Sect. C., 1988, 44, 603; (b) M. R. Churchill, S. A. Julis and F. J. Rotella, Inorg. Chem., 1977, 16, 1137.
- 9 J. G. Norman, Jr. and D. J. Gmur, J. Am. Chem. Soc., 1977, 99, 1446.

[‡] Crystal data for C₁₈H₂₃NRu: M = 354.46, monoclinic, $P2_1/n$, a = 9.975(8), b = 18.93(1), c = 18.733(8) Å, $\beta = 91.36(5)^\circ$, U = 3536(4) Å³, Z = 8, $D_c = 1.444$ g cm⁻³, $\lambda = 0.71069$ Å, $\mu = 8.67$ cm⁻¹, F(000) = 1576, T = 296 K. The data were collected on a Rigaku AFC6R diffractometer. The structure was determined *via* Patterson methods; the final cycle of full matrix least-squares refinement was based on 3816 reflections with $20 < 49.9^\circ$, $I > 3\sigma(I)$. The structure was found to be dimeric. One half of a pentane molecule whose central atom was located upon a special position was found in the unit cell; this fragment could not be refined anisotropically. All other atoms were refined anisotropically. The final R = 0.050, $R_w = 0.065$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See notice to Authors, Issue No. 1.