## Single Step Synthesis of 2,4-Dicyanonaphthylamines from Synthetic Equivalents of $\alpha$ -Cyanoalkynes

## **Daniel Reux and Francis Pochat\***

Laboratoire de Synthèse Organique, Université de Rennes, Campus de Beaulieu, 35042 Rennes, France

Nitrile thioethers R–CBr=C(SEt)CN 4 react like  $\alpha$ -alkynenitriles with ambiphilic derivatives, as shown by a new synthesis of naphthylamines.

The simplest way of access to bicyclic compounds **3** seems to be the condensation of an  $\alpha$ -alkynenitrile with a 1,4-dipole. To our knowledge this reaction has never been reported (Scheme 1). We now report the first carbocyclisation reaction in accordance with this principle, starting from bromoacrylonitriles **4**.<sup>1</sup> These compounds behave in fact like synthetic equivalents of  $\alpha$ -alkynenitriles R-CBr=C(SEt)-CN = R-C=C-CN.

Naphthylamine 6, for example, was readily obtained when dipole 5 was reacted with 4 (Scheme 2), using the following general procedure: the carbanion 5 generated from NaH (14

mmol) and 2-cyanophenylacetonitrile (or 2-cyano-5-methoxy-phenylacetonitrile<sup>2</sup>) (15 mmol) in MeCN (15  $cm^3$ ) was



| Table 1 Phys | ical data fo | r naphthy | lamines 6ª |
|--------------|--------------|-----------|------------|
|--------------|--------------|-----------|------------|

| <br>-                  | •                                  |                       |         |           |                        |                 |
|------------------------|------------------------------------|-----------------------|---------|-----------|------------------------|-----------------|
|                        |                                    |                       |         |           | IR (Nujol): v/c        | m <sup>-1</sup> |
|                        | R1                                 | <b>R</b> <sup>2</sup> | M.p/°C  | Yield (%) | NH <sub>2</sub> (free) | C≡N             |
| 6a                     | Ме                                 | Н                     | 275-276 | 78        | 3452, 3362             | 2220            |
| 6b                     | Me                                 | OMe                   | 300-301 | 56        | 3447, 3374             | 2223, 2215      |
| 6c                     | Bu <sup>n</sup>                    | Н                     | 161-163 | 73        | 3444, 3365             | 2221            |
| <b>6d</b> <sup>b</sup> | Ph                                 | Н                     | 357-360 | 86        | 3478, 3376             | 2228, 2218      |
| 6e                     | Ph                                 | OMe                   | 317-320 | 64        | 3470, 3363             | 2233, 2225      |
| 6f                     | $p-ClC_6H_4$                       | Н                     | 296-297 | 83        | 3478, 3376             | 2228, 2218      |
| 6g                     | p-MeOC <sub>6</sub> H <sub>4</sub> | Н                     | 273–275 | 79        | 3480, 3380             | 2230, 2225      |
|                        |                                    |                       |         |           |                        |                 |

<sup>a</sup> Satisfactory microanalytical and/or accurate mass measurements were obtained for all new compounds. <sup>b</sup> The reaction of freshly prepared phenylpropynenitrile, m.p. 38–39 °C (7 mmol), 5 ( $R^2 = H$ ) (7.7 mmol) and NaH (7 mmol) under the same conditions gives 6d in 80% yield.





Scheme 3

References

- 1 F. Pochat, Tetrahedron Lett., 1979, 1, 19.
- 2 E. Ghera, A. Plemenitas and Y. Ben-David, Synthesis, 1984, 504;
  H. M. Blatter, H. Lukaszewski and G. Stevens, J. Am. Chem. Soc., 1961, 83, 2203;
  J. L. Neumeyer and K. K. Weinhardt, J. Med. Chem., 1970, 13, 613;
  C. C. Price, F. M. Lewis and M. Meister, J. Am. Chem. Soc., 1939, 61, 2760.
- 3 F. Pochat and E. Levas, Tetrahedron Lett., 1976, 18, 1491.

warmed to 45 °C, and acrylonitrile 4<sup>†</sup> (7 mmol, in the same solvent) was added all at once. Stirring was pursued for 45 min to 45 °C, then the solution was refluxed for 45 min and the solvent was evaporated. The residue was stirred for 30 min with  $H_2O-Et_2O$  (Et<sub>2</sub>O extracts completely by-product 7) and the naphthylamine 6 filtered off and recrystallised (Table 1).

Isolation of the by-product 7 (characterised by unequivocal synthesis from  $2\text{-}CN\text{-}C_6H_4\text{-}CH\text{=}O^3$ ) suggests to us the following mechanism with a sulphenium leaving group in the aromatisation step (Scheme 3).

Received, 3rd June 1991; Com. 1/02624K

<sup>†</sup> The bromo-compounds 4 were prepared by the method in ref. 1.

$$R-CHO + \langle SMe \xrightarrow{EIO^{-}} R-CH = C \langle SMe \xrightarrow{Br_{2}(1.3 \text{ equiv.})} R-CBr = C \langle SMe \xrightarrow{CN} (CCI_{4} \text{ or } MeCN)^{i} \rangle$$