1437

Picosecond Spectroscopic Detection of Diphenylcarbenium lon in the Photolysis of Diphenyldiazomethane in Aliphatic Alcohols

John E. Chateauneuf

Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA

Laser flash photolysis studies support a protonation mechanism in the O–H insertion reaction of diphenylcarbene with alcohols.

Recently, Kirmse, Kilian and Steenken¹ presented convincing evidence that diarylcarbenium ions could be generated by protonation of diarylcarbenes with water or 2,2,2-trifluoroethanol (TFE). The electronic absorption spectra of several *p*-substituted diphenylcarbocations were detected following nanosecond laser flash photolysis (LFP) of the respective diazo compounds in either solutions of MeCN-H₂O or MeCN-TFE. There was, however, no detection of the parent diphenylcarbenium ion (Ph₂CH) in MeCN-H₂O due to rapid nucleophilic attack by H₂O.[†] Herein, we report the picosecond detection of Ph₂CH observed following LFP of diphenyldiazomethane (Ph₂CN₂) in MeCN-H₂O, as well as, in neat methanol, ethanol and propan-2-ol.

The picosecond LFP apparatus has previously been described.² A mode-locked Quantel YG-501 DP Nd: YAG laser, pulse width ~18 ps full width at half maximum (fwhm), supplied both the 266 or 355 nm excitation pulses and a 1064 nm pumped white light continuum $(1:1, H_2O: D_2O$ solution) was used as the probe. All LFP experiments were performed using a flow cell system at 21 °C.

For a spectral comparison, nanosecond LFP (266 nm, ~8 mJ) of diphenylchloromethane (Ph₂CHCl) in MeCN resulted in both photohomolytic and photoheterolytic carbon-chlorine bond cleavage to generate diphenylmethyl radical, λ_{max} 330 nm, and Ph₂CH, λ_{max} 435 nm (Fig. 1, top right). The absorption maximum and reactivity of Ph₂CH were identical to those previously reported.³ For direct comparison, picosecond LFP (266 nm, ~1.1 mJ) of Ph₂CHCl in MeCN also resulted in the absorption spectrum of Ph₂CH [(*a*) in Fig. 1]. Under the same conditions in pure MeCN LFP of Ph₂CN₂ resulted in no observable absorption between 400 and 600 nm.

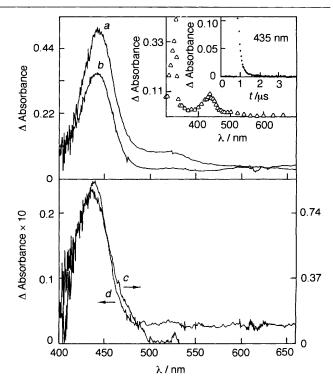


Fig. 1 UV–VIS absorption spectrum (top, right) observed 80 ns after 266 nm nanosecond LFP of Ph₂CHCl in MeCN (insert represents decay trace observed at 435 nm). Visible absorption spectra (a)-(d) were observed upon full completion of the 18 ps (fwhm) excitation pulse following: (a) 266 nm LFP of Ph₂CHCl in MeCN; (b) 266 nm LFP of Ph₂CN₂ in 2:1 MeCN: H₂O; (c) 355 nm LFP of Ph₂CN₂ in 1:1 MeCN: H₂O; and (d) 355 nm LFP of Ph₂CN₂ in neat propan-2-ol.

[†] Ph_2CH was observed in (1:1.6) MeCN-TFE.

In dramatic contrast, LFP of Ph₂CN₂ in 2:1 MeCN: H₂O resulted in an absorption spectrum [(*b*) in Fig. 1] identical to that of Ph₂CH generated from Ph₂CHCl photolysis. Picosecond 355 nm LFP of Ph₂CN₂ in 1:1 MeCN: H₂O resulted in an absorption spectrum [(*c*) in Fig. 1] nearly identical to (*a*) and (*b*) in Fig. 1. The slight band shape distortion is attributed to higher concentration and absorption of the diazo precursor. Monitoring at 440 nm, the signal is formed within the laser pulse and a linear plot of Δ optical density *vs*. laser intensity indicates Ph₂CH is generated monophotolytically. An exponential fit to the signal decay yielded a pseudo-first-order decay rate constant of 1.33×10^9 s⁻¹, *i.e.* $\tau = 750$ ps.

Picosecond 355 nm LFP of Ph_2CN_2 in neat, anhydrous propan-2-ol yielded a spectrum [(d) in Fig. 1] identical to that observed in aqueous MeCN, as did LFP of Ph_2CN_2 in ethanol and methanol. In each case, Ph_2CH was formed within the laser pulse and decayed with first-order kinetics resulting in lifetimes (1/k) of 85, 70 and 40 ps in PrⁱOH, EtOH and MeOH, respectively. The rates of decay observed represent the nucleophilicity of each solvent towards Ph_2CH .^{1,3} These results support the protonation mechanism first suggested by Kirmse⁴ in the 'insertion' reaction of Ph_2C : with alcohols to form diphenylmethyl ethers.

The work described herein was supported by the Office of Basic Energy Sciences of the US Department of Energy. This is Contribution No. NDRL-3391 from the Notre Dame Radiation Laboratory.

Received, 3rd July 1991; Com. 1/03346H

References

- 1 W. Kirmse, J. Kilian and S. Steenken, J. Am. Chem. Soc., 1990, 112, 6399.
- 2 T W. Ebbesen, Rev. Sci. Instrum., 1988, 59, 1307.
- 3 R. A. McClelland, V. M. Kanagasabapathy, N. S. Banait and S. Steenken, J. Am. Chem. Soc., 1989, 111, 3966; R. A. McClelland, V. M. Kanagasabapathy and S. Steenken, J. Am. Chem. Soc., 1988, 110, 6913.
- 4 W. Kirmse, Justus Liebigs Ann. Chem., 1963, 666, 9; W. Kirmse, Carbene Chemistry, Academic Press, New York, 2nd edn., 1971, pp. 423ff.