Five-coordinate Rhodium(III) Complexes Containing the Novel TeF₃ Ligand

E. A. V. Ebsworth,^a John H. Holloway^b and Paul G. Watson*b

^aChemistry Department, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK ^bChemistry Department, The University, Leicester LEI 7RH, UK

Tellurium tetrafluoride reacts at 195 K in CD₂Cl₂ with Rh(CO)X(PEt₃)₂ [X = Cl, Br, NCS, NCO] to give the novel complexes [Rh(CO)X(PEt₃)₂(TeF₃)+][TeF₅-], which have been characterised by ¹⁹F, ³¹P and ¹³C NMR spectroscopy; for X = CI, **Br** and NCS the complexes are stable at ambient temperature but for X = NCO decomposition occurs at 215 K.

Until recently the only well established examples of transition metal complexes containing fluorinated ligands were those involving carbon (e.g. CF_3 ,¹ C_2F_4 ²), phosphorus (e.g. PF_2 ,³ PF_3 ,⁴ PF_4 ⁵) and nitrogen { $[Ref_5(NF)]^6$ }. However, since 1986 Ebsworth *et al.* have produced complexes containing NF_2 ,⁷ $SF₃$,⁸ $SF₂$ ⁺, SOF,⁸ SeF₃, AsF₂⁹ and COF¹⁰ ligands.

In this paper we present spectroscopic evidence that clearly shows that $TeF₄$ undergoes an unusual oxidative addition reaction with $Rh(CO)X(PEt₃)₂$ to form unusual pentacoordinate monocationic complexes containing the terminal TeF_3 ligand, eqn. (1), in pronounced contrast to the equivalent reactions of $SF₄$ and $SeF₄$.

The reaction between trans-Rh(CO)Cl(PEt₃)₂ and TeF₄ in a 1 **1** ratio occurred rapidly in CD_2Cl_2 at 195 K to produce a deep-red solution. The $^{31}P(^{1}H)$ ⁺ NMR spectrum showed two resonances of approximately equal intensity, a doublet at 6 24.3 arising from unreacted starting material **A,** and a doublet of triplets of doublets at *6* 27.4 arising from **B.** The latter resonance was in the region of the spectrum associated with $PEt₃$ complexes of Rh^{III9} and showed a narrow doublet coupling (3 Hz) which we assign to $3J_{\text{PF}}$, a larger triplet coupling (16 Hz) which we assign to a second $3J_{\text{PF}}$ and a large doublet coupling (92 Hz) which we assign to ¹J_{PRh}. This value of $1J_{\text{PRh}}$ is not consistent with PEt_3 coupling to either six-coordinate Rh^{III} or square planar Rh^I. It is, however, indicative of $Rh-PR_3$ coupling in square pyramidal Rh complexes.¹¹ The ¹⁹F{¹H} NMR spectrum showed only four resonances, F_1 , F_2 , F_3 and F_4 , each of which showed coupling to ¹²⁵Te and whose ratios were approximately $2:1:4:1$ (see Fig. 1). The resonances F_2 and F_3 were identified as the quintet and doublet of the pentafluorotellurate(1v) anion.12 Of the remaining two resonances F_1 lay at δ -9.6 and was comprised of a doublet (23 Hz) assigned as $2J_{\text{FF}}$, a doublet (18 Hz) assigned as $2J_{\text{FRh}}$ and a triplet (16 Hz) assigned as $3J_{\text{FP}}$ and F_4 comprised a triplet (23 Hz) assigned as ${}^2J_{FF}$ of doublets (7 Hz) assigned as ${}^{2}J_{\text{FRh}}$ at δ -68.4. A sample of Rh(¹³CO)Cl- $(PEt₃)₂$ was prepared and allowed to react with TeF₄. The ¹³C NMR spectrum of this solution showed a doublet [(71 Hz) assigned as ${}^{1}J_{\text{CRh}}$ of triplets [(9 Hz) assigned as ${}^{2}J_{\text{CP}}$ of doublets $[(8 \text{ Hz})]$ assigned as ${}^{3}J_{CF_4}$. There are two possible ways of viewing the structure. The first would be to assume bonding involving a TeF₃+ cation bonded to a Rh¹ centre, the second involves TeF_3 ⁻ attached to a Rh^{III} centre. We believe that the evidence for the second structure is overwhelming on the following grounds. First, the magnitude of V_{PRh} unmistakenly characterises the complex as having square pyramidal

t **NMR standards: all NMR shifts are reported as positive to high frequency of 85% H3P04 (for 31P), CC13F (for '9F) and Me4Si (for 13C).**

geometry are Rh^{III} species (see for example ref. 11). Rhodium(I) complexes would have trigonal bipyramidal geometries and two possible isomers with respect to the locations of the phosphines. In the case where the phosphines were axial we would expect **'JpRh** to be lower and where they were equatorial higher than our observed couplings. Secondly, the colour is suggestive of Rh^{III} as Rh^I complexes are generally light in colour. Finally, the assigned product is consistent with results observed in analogous SF_4 and SeF_4 reactions. In the reaction of $M(CO)X(PEt₃)₂$ [M = Ir, Rh; X = Cl, Br, I, NCS, NCO] with $SF_4^{8,9}$ various isomers of the M^{III} complex $M(CO)XF(PEt₃)₂(SF₃)$ were observed, the products of oxidative addition reactions. Similarly, complexes M(C0)XF- $(PEt₃)₂SeF₃⁹$ were observed on reaction of SeF₄ with $M(CO)X(PEt₃)₂$, however, in several cases intermolecular exchange of Rh-F with Se F_5 ⁻ was observed, indicating a weak Rh-F bond, It is logical to assume that in this reported work we are observing the continuation of this trend where oxidative addition of TeF_3 and F occurs, followed by removal of F^- by a second molecule of Te F_4 , producing a Rh^{III} complex. We have thus formulated the product of this reaction as $[\hat{R}h(CO)Cl(PEt₃)₂(TeF₃)]⁺$. For $X = Br$ and NCS, similar 19F and 31P NMR spectra were obtained, indicating that similar complexes are obtained, the only differences were in the positions of F_1 and F_4 . Both of these complexes were stable at ambient temperature. In the reaction where $X = NCO$ we also observed NMR spectra similar to those seen for $Rh(CO)X(PEt₃)₂ + TeF₄$, where X was Cl, Br or NCS, indicating formation of $[Rh(CO)NCO(PEt_3)_2(TeF_3)^+]$. However, this complex was observed to decompose at 220 K.

On warming the samples where $X = Br$ and NCS, we observed different temperatures at which the $TeF₅$ became fluxional, indicating probable interaction of TeF_5 ⁻ with $[Rh(CO)X(PEt₃)₂(TeF₃)⁺]$. This was supported by the fact that, on reaction of two equivalents of TeF₄ with Rh(CO)X- $(PEt₃)₂$, no unreacted starting material was observed, indicating that the product formulation was $[Rh(CO)X(PEt₃)₂$ - $(TeF_3)^+$][TeF₅⁻].

Unfortunately, these complexes are highly reactive with moisture and air and, although we have grown deep-red, single crystals in the form of elongated, rectangular blocks on several occasions, we have been unable so far to obtain a

Fig. 1¹⁹F $\{^1H\}$ NMR spectrum of Rh(CO)Cl(PEt₃)₂ + TeF₄ at 195 K

try. The instabilities of these complexes have prevented obtention of satisfactory infrared, **FAB** mass spectrometric and analytical data. Preliminary reactions of TeF_4 with the analogous iridium

starting materials indicate that similar reactions may by occurring but the products appear to be significantly less stable than their rhodium analogues.

We thank the SERC for financial support.

Received, 22nd May 1991; Corn. 1102420E

References

- 1 E. M. Hyde, **J.** D. Kennedy, B. L. Shaw and W. McFarlane, *J. Chem. SOC., Dalton Trans.,* 1977, 1571.
- **2** M. Green and *S.* H. Taylor, J. *Chem. SOC., Dalton Trans.,* 1975, 1128.
- 3 E. **A.** V. Ebsworth, R. 0. Gould, N. T. McManus, D. W. H. Rankin, M. D. Walkinshaw and **J.** D. Whitelock, *J. Organomet. Chem.,* 1983,249,227.
- 4 T. Kruck and K. Baur, *Chem. Ber.,* 1965, 98, 3070.
- *5* E. **A.** V. Ebsworth, J. H. Holloway, N. J. Pilkington and
- D. W. H. Rankin, *Angew. Chem., Int. Ed. Engl.,* 1984,23, 630. 6 J. Fawcett and R. D. Peacock, *J. Chem. SOC., Chem. Commun.,*
- 1982, 958. 7 R. W. Cockman, E. **A.** V. Ebsworth and J. H. Holloway, J. *Chem. SOC., Chem. Commun.,* 1986, 1622.
- 8 R. W. Cockman, E. **A.** V. Ebsworth and **J.** H. Holloway, *J. Am. Chem. SOC.,* 1987, 109, 2194.
- 9 R. W. Cockman, E. **A.** V. Ebsworth, J. H. Holloway and P. G. Watson, unpublished results.
- 10 **A.** J. Blake, R. W. Cockman, E. **A. V.** Ebsworth and **J.** H. Holloway, J. *Chem. SOC., Chem. Commun.,* 1988, 529.
- 11 H. L. Van Gaal, J. **M.** Verlak and T. Posno, *Inorg. Chim. Acta,* 1977,23,43; *C.* Masters and B. L. Shaw, *J. Chem. SOC., (A),* 1971, 3679; M. Ghedini, G. Dolcetti, 0. Gandolfi and B. Giovannitti, *Inorg. Chem.,* 1976, **15** (lo), 2385.
- 12 R. J. Morris and K. C. Moss, J. *Fluorine Chem.,* 1979, 13, 551.