Structure and Synthesis of Sporogenic Psi Factors from Aspergillus nidulans

Paul Mazur,^a Koji Nakanishi,^{* a} A. Atef Ebrahim El-Zayat^b and Sewell P. Champe^{* b}

^a Department of Chemistry, Columbia University, New York, New York 10027, USA

^b Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA

The structures of four hydroxylated unsaturated C_{18} fatty acids (psi factors) which induce premature sexual sporulation in *A. nidulans*, and the enantioselective synthesis of two of the components, $psiB\alpha$ and $psiB\beta$, are described.

We have reported the characterization of endogenous factors, $psiA\alpha \ 1$ and $psiA\beta \ 2$, which induce premature sexual sporulation in the ascomycetous fungus *Aspergillus nidulans*.^{1,2} The characterization† of $psiB\alpha \ 3a$, $psiB\beta \ 4a$, $psiC\alpha \ 5a$, and $psiC\beta \ 6a$, with higher sporogenic activity, and the synthesis of $psiB\alpha \ 3a$ and $psiB\beta \ 4a$ are described below.

Crude psiB and psiC, IR v 1710 cm^{-1} (CO₂H), were esterified with diazomethane and purified by HPLC (C_{18} , 80% MeCN-H₂O) to yield the methyl esters $psiB\alpha$ 3b, $psiB\beta$ 4b, psiC α 5b, and psiC β 6b. Analysis of spectroscopic data of 3b indicated that acid 3a is identical with laetisaric acid (8-OH configuration undetermined), an allelopathic agent produced by the basidiomycete fungus Laetisaria arvalis.³ The ¹H and ¹³C NMR of psiB β methyl ester 4b showed the presence of secondary OH and a *cis*-disubstituted double bond $(J_{9,10} =$ 11.0 Hz). Location of 8-OH in the psiB's was confirmed by the mass spectrum of the perhydro trimethylsilyl ether derivative 7, which showed peaks corresponding to cleavage at C-7-C-8 $(m/z 243, C_{14}H_{31}OSi)$ and C-8–C-9 $(m/z 245, C_{12}H_{25}O_3Si)$; the absolute configuration was established as (8R) from the CD⁴ of the *p*-bromobenzoate of psiB β methyl ester 4c, $\lambda_{ext}(\Delta \epsilon)$ 243 nm (-7.5) in MeCN. The structures of $psiB\alpha$ and $psiB\beta$ are thus (8R)-(Z,Z)-hydroxyoctadeca-9,12-dienoic acid and (8R)-(Z)-hydroxyoactadec-9-enoic acid, respectively.

PsiCs are readily converted to psiAs, particularly with acid, the products being identified with authentic psiAs by TLC and HPLC; furthermore, the conversion products yield psiC

For **4b**: HRMS m/z 312.2626 (M⁺, C₁₉H₃₆O₃, calc. 312.2664); ¹H NMR (250 MHz, CDCl₃) δ 5.46 (1H, dt, J 11.0, 7.3 Hz, H-10), 5.34 (1H, ddt, J 11.0, 7.5, 1.5 Hz, 9-H), 4.40 (1H, dt, J 8.5, 6.4 Hz, 8-H), 3.65 (3H, s, CO₂Me), 2.28 (2H, t, J 7.4 Hz, 2-H, H'), 2.05 (2H, m, 11-H, H'), 1.70–1.20 (22H, m), 0.86 (3H, t, J 6.4 Hz, 18-Me); ¹³C NMR (62.9 MHz, CDCl₃) δ 174.2, 132.6, 132.4, 67.7, 51.4, 37.5, 34.1, 31.9, 29.7, 29.4, 29.2, 29.1, 27.7, 25.2, 24.9, 22.7, 14.1.

For **5b**: HRMS m/z 309.2424 (M⁺ – OH, C₁₉H₃₃O₃, calc. 309.2430); CI-MS, *iso*-butane, m/z 327 (M⁺ + 1); ¹H NMR (400 MHz, CDCl₃): δ 5.45 (1H, dt, J 10.9, 7.1 Hz, 10-H), 5.45–5.35 (2H, m, 13, 9-Hs), 5.29 (1H, dtt, J 10.7, 7.2, 1.5 Hz, 12-H), 4.48 (1H, ddd, J 8.3, 7.6, 4.5 Hz, 8-H), 3.65 (3H, s, CO₂Me), 3.60 (1H, m, 5-H), 2.82 (2H, m, 11-H, H'), 2.33 (2H, t, J 7.6 Hz, 2-H, H'), 2.02 (2H, dt, J 6.9, 6.9 Hz, 14-H, H'), 1.85–1.55 (5H, m), 1.55–1.40 (3H, m), 1.40–1.20 (6H, m), 0.87 (3H, t, J 6.9 Hz, 18-Me); ¹³C NMR (75.4 MHz, CDCl₃) δ 174.2, 132.5, 131.0, 130.4, 126.9, 71.4, 68.0, 51.6, 36.9, 34.1, 33.8, 33.7, 31.5, 29.2, 27.3, 26.0, 22.6, 21.0, 14.1.

For **6b**: high-resolution FAB-MS, nitrobenzyl alcohol, m/z 329.2652 (M⁺ + 1, C₁₉H₃₇O₄, calc. 329.2692); ¹H NMR (400 MHz, CDCl₃): δ 5.46 (1H, dt, *J* 11.0, 7.3 Hz, 10-H), 5.38 (1H, ddt, *J* 11.0, 8.3, 1.4 Hz, 9-H), 4.44 (1H, ddd, *J* 8.3, 7.8, 4.5 Hz, 8-H), 3.65 (3H, s, CO₂Me), 3.60 (1H, m, 5-H), 2.33 (2H, t, *J* 7.2 Hz, 2-H, H'), 2.05 (2H, m, 11-H, H'), 1.80–1.40 (10H, m), 1.40–1.20 (10H, m), 0.86 (3H, t, *J* 6.8 Hz, 18-Me); ¹³C NMR (75.4 MHz, CDCl₃): δ 174.2, 132.5, 132.2, 71.4, 68.0, 51.5, 36.9, 34.1, 33.9, 33.8, 31.9, 29.7, 29.4, 29.3, 27.7, 22.7, 21.0, 14.1.

methyl esters upon methanolysis. This suggested psiCs **5a**, **6a** to be the acyclic forms of psiAs; a comparison of psiC α **5b** and psiC β **6b** methyl esters with those of psiA α and psiA β (prepared by acidic methanolysis) showed the compounds to be identical. Assuming that 8-OH retains its configurations in the psiA \rightarrow psiC conversions, the structures of psiC α and psiC β are established as (5*S*, 8*R*)-(*Z*,*Z*)-dihydroxyoctadeca-9,12-dienoic acid and (5*S*, 8*R*)-(*Z*)-dihydroxyoctadec-9-enoic acid, respectivley.

The psiB and psiC components, **3a/4a** and **5a/6a**, exhibit the highest sporogenic activity;² from the present results it

⁺ Spectroscopic data for **3b**: high-resolution EI-MS (HRMS) m/z310.2515 (M⁺, C₁₉H₃₄O₃, calc. 310.2508); ¹H NMR (250 MHz, CDCl₃) δ 5.50–5.20 (4H, m, 9-, 10-, 12-, 13-H), 4.44 (1H, dt, *J* 8.5, 6.4 Hz, 8-H), 3.65 (3H, s, CO₂Me), 2.82 (2H, m, 11-H, H'), 2.28 (2H, t *J* 7.4 Hz, 2–H,H'), 2.03 (2H, dt, *J* 6.5, 7.0 Hz, 14-H, H'), 1.70–1.20 (16H, m) 0.86 (3H, t, *J* 6.7 Hz, 18-Me); ¹³C NMR (62.9 MHz, CDCl₃) δ 174.2, 132.8, 130.9, 130.5, 127.1, 67.7, 51.4, 37.4, 34.1, 31.5, 29.7, 29.2, 29.1, 27.3, 26.1, 25.2, 24.9, 22.6, 14.0

Scheme 1 Reagents and conditions: i, LiC=CCH₂C=C[CH₂]-Me (3.3 equiv.), BF₃·OEt₂ (3.5 equiv.), tetrahydrofuran (THF), -78 °C, 30 min (76%); ii, LiC=C[CH₂]₇Me (3.3 equiv.), BF₃·OEt₂ (3.5 equiv.), THF, -78 °C, 30 min (46%); iii, (+)-Alpine-Borane (2-4 equiv.); 97.5% e.e.), neat, room temp., 12 h; iv, EtCHO; v, H₂O₂, 3 mol dm⁻³ NaOH or HOCH₂CH₂NH₂ (72-86%; 90-92.5 e.e.); vi, H₂Pd-BaSO₄, quinoline, MeOH (55-68%; 90-91.5% e.e.)

appears that the weak activity of psiA is due to its conversion to psiC during the assay. It is noteworthy that while the psi factors induce sporulation in *A. nidulans*, laetisaric acid elicits a dramatically different fungicidal response by hyphal lysis (primarily in the phycomycetous fungi).³

The structures of psiB α **3a** and psiB β **4a** were confirmed by an enantioselective synthesis (Scheme 1).‡ The ester-*N*, *N*dimethylamide **8** was prepared from cyclooctene by (*i*) ozonolysis (92%),⁵ (*ii*) oxidation with KMnO₄ (94%), (*iii*) formation of the monoacid chloride with SOCl₂ (77%), and (*iv*) amidation with 40% aqueous Me₂NH (50%). The amide **8** was coupled with the alkyne boranes prepared from the

[‡] All synthetic material exhibited satisfactory ¹H NMR, ¹³C NMR, IR, and MS data. Synthesis of $psiA\beta 2$ and $psiC\beta 6a$: P. Mazur and K. Nakanishi, submitted for publication.

lithium acetylide of deca-1,4-diyne⁶ or dec-1-yne and BF₃·Et₂O⁷ to afford the acetylenic ketones **9** (46%) and **10** (76%). Reduction of the ketones **9** and **10** with neat (+)-Alpine-Borane⁸ {from 9-BBN (9-borabicyclo[3.3.1]-nonane) and (1*R*)-(+)- α -pinene; 97.5% enantiomeric excess (e.e.)} provided the corresponding (8*R*)-propynylic alcohols 72–86%, 90–93% e.e.§), which were hydrogenated over Pd–BaSO₄ poisoned with quinoline to afford methyl esters of psiB α **3b** and psiB β **4b** (55–68%, 90–92% e.e.). Spectral data of synthetic methyl estrs, psiB α **3b**, $[\alpha]_D^{26}$ (synth. **3b**) +13.7° (*c* 0.033 g ml⁻¹, CHCl₃) and psiB β **4b**, $[\alpha]_D^{26}$ (synth. **4b**) +13.7° (*c* 0.012 g ml⁻¹, CHCl₃) and those of natural samples were identical. Moreover, synthetic psiB acids **3a** and **4a** obtained by hydrolysis induced premature sexual sporulation in *A. nidulans* as with authentic compounds.

This study was supported by NIH grants AI 10187 (to K. N.) and GM 17020 (to S. C.), by the Charles and Johanna Busch Memorial Fund (to S. C.), and by a NIH predoctoral fellowship (to P. M.).

Received, 28th June 1991; Com. 1/103236D

References

- 1 P. Mazur, H. V. Meyers, K. Nakanishi, A. A. E. El-Zayat and S. P. Champe, *Tetrahedron Lett.*, 1990, **31**, 3837.
- S. P. Champe, P. Rao, and A. A. Chang, J. Gen. Microbiol., 1987, 133, 1383; S. P. Champe and A. E. El-Zayat, J. Bacteriol., 1989, 171, 3982.
- 3 W. S. Bowers, H. C. Hoch, P. H. Evans and M. Katayama, *Science*, 1986, 232, 105; P. H. Evans, N. H., Haunerland and W. S. Bowers, *Am. Chem. Soc.*, *Symp. Ser.*, 1987, 355, 353.
- 4 N. C. Gonnella, K. Nakanishi, V. S. Martin and K. B. Sharpless, J. Am. Chem. Soc., 1982, 104, 3775.
- 5 R. E. Claus and S. L. Schreiber, *Org. Synth.*, 1985, **64**, 150. The ester aldehyde was prepared by (*i*) O₃, MeOH-CH₂Cl₂; (*ii*) Et₃N, Ac₂O.
- 6 A. I. Rachlin, N. Wasyliw and M. W. Goldberg, J. Org. Chem., 1960, 26, 2688.
- 7 M. Yamaguchi, T. Waseda and I. Hirado, Chem. Lett., 1983, 35.
- 8 M. M. Midland and R. S. Graham, Org. Synth. 1984, 63, 57.

§ Determined by ¹H NMR or using Eu (hfc)₃, or from ¹⁹F NMR.