Chemical Communications

Number 21 1991

Kinetics of the Capture of Methyl Radicals by Carbon Monoxide in Aqueous Solution

Andreja Bakac* and James H. Espenson

Ames laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa 5007 **7,** *USA*

The title reaction has a rate constant of (2.0 \pm 0.3) \times 10⁶ dm³ mol⁻¹ s⁻¹ at 25 °C, which is fast enough to make it a useful route for C-C bond formation even at ambient temperatures and pressures.

The gas phase reaction of CH₃[·] with CO,¹ eqn. (1), has forward and reverse rate constants of $k_1 = 6.5 \times 10^3$ dm³ mol⁻¹ s⁻¹ and k_{-1} = 7.3 s⁻¹ at 25 °C. It has been assumed that the solution and gas phase values of k_1 are similar,² but some other work indicated that reaction (1) is 'exceedingly fast' in

$$
{}^{1}CH_{3} + CO \rightleftarrows CH_{3}CO \qquad (1)
$$

solution.³ The apparent controversy and the potential importance of reaction (1) as a C-C bond forming step in organic and organometallic synthesis prompted us to study the solution reaction. **A** direct determination by standard methods would be difficult in view of the low molar absorptivities of all the species involved, and thus a chemical competition method was devised.

Methyl radicals were generated by a Fenton-type reaction between Bu^tOOH and either of two macrocyclic cobalt complexes $(H_2O)_2COL^{2+}$ ($L^1 = 1,4,8,11$ -tetraazacyclotetradecane, L2 = **rneso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetra**azacyclotetradecane), eqn. $(2)-(3)$, at pH 1-2.[†] In argonsaturated solutions in the absence of CO reaction (3) was followed exclusively by the capture of \cdot CH₃ by $\frac{H_2O}{2}$ CoL²⁺ in the concentration ranges $[(H_2O)_2COL^{2+}] = 0.1-1$ mmol dm⁻³ (always in an excess), $[Bu^tOOH] = 0.05-0.4$ mmol dm⁻³, eqn. (4).^{4,5}

$$
(H2O)2CoL2+ + (CH3)3COOH \rightarrow (H2O)2CoL3+ +(CH3)3CO+ + OH- (2)
$$

$$
(CH3)3CO+ \to ^{\bullet} CH3 + (CH3)2CO k = 1.4 \times 106 s-16
$$
 (3)

$$
CH_3 + (H_2O)_2CoL^{2+} \to CH_3CoL(H_2O)^{2+} + H_2O
$$
 (4)

Under an atmosphere of *CO,* the competition between $(H₂O)₂CoL²⁺$ and CO for 'CH₃, eqns. (1) and (4), resulted in the formation of two different organocobalt complexes, the known $CH_3CoL(H_2O)^{2+4.5}$ and a novel acetyl complex $CH_3C(O)CoL(H_2O)^{2+}$, eqn. (5). \ddagger

$$
CH3CO + (H2O)2Col22+ \xrightarrow{fast} CH3CO)Col(H2O)2+ + H2O
$$
 (5)

The yields of acetylcobalt were determined spectrophotometrically after the reduction by Cr^{2+} of the strongly absorbing $(H_2O)_2COL^{3+}$, formed in reaction (2), to the weakly absorbing $(H_2O)_2COL^{2+}$. These experiments used CO-saturated solutions ($[CO] = 0.96$ mmol dm⁻³)⁸ and several concentrations of $(H_2O)_2CoL^{2+}$ (0.05–1.0 mmol dm⁻³ for L¹, 0.1–0.5 mmol dm⁻³ for L²) and Bu^tOOH (0.02–0.4 mmol dm⁻³ for L¹, 0.04-0.2 mmol dm⁻³ for L²). The data were fitted to eqn. (6), § which yielded $k_1 = (2.3 \pm 0.1) \times 10^6$ $(L = L¹)$ and $(1.8 \pm 0.1) \times 10⁶$ $(L = L²)$ dm³ mol⁻¹ s⁻¹, giving an average value of $(2.0 \pm 0.3) \times 10^6$ dm³ mol⁻¹ s⁻¹.

[CH₃C(O)Col(H₂O)²⁺]_{\infty} = - (*k*₁/2*k*₄) [CO]_{av}.
\n
$$
\ln\left\{1 - \frac{[ButOOH]o}{0.5[(H2O)2Col2+]o + (k1/2k4) [CO]av}\right\}
$$
(6)

This confirms the reaction scheme of eqns. (1), (4), (5), and thus the validity of our approach to the determination of k_1 . Specifically, the most probable alternative scheme, whereby 'CH3 reacts rapidly with small (but undetected) amounts of a

§ Eqn. (6) takes into account the fact that the concentration of $(\text{H}_2\text{O})_2\text{CoL}^{2+}$ changes significantly during the course of each experiment, whereas that of CO remains sufficiently constant that an average value suffices. Thus $[(H_2O)_2COL^{2+}]_t = [(H_2O)_2COL^{2+}]_0$ – average value suffices. Thus $[(H_2O)_2COL^{2+}]_t = [(H_2O)_2COL^{2+}]_0 - 2[CH_3CO)COL(H_2O)^{2+}]_t$ and Subscripts o and ∞ are used for initial and final concentrations, and t for all the intermediate ones. $2[CH_3COL(H_2O)^{2+}]_k$ - $2[CH_3C(O)COL(H_2O)^{2+}]_k$ and
[CH₃COL(H₂O)²⁺]_x + [CH₃C(O)Co(L)(H₂O)²⁺]_x = [Bu'OOH]_o.

Thus, according to eqns. (1) , (4) and (5) , and denoting LCo-COCH₃²⁺ as A and LCoCH₃²⁺ as B:

$$
\frac{d[B]/dt}{d[A]/dt} = \frac{k_4[LCo^{2+}]_0 - 2[A] - 2[B])}{k_1[CO]_{av.}}
$$

$$
\frac{d[B]}{d[A]} + \frac{2k_4[B]}{k_1[CO]_{av.}} = \frac{k_4[LCo^{2+}]_0}{k_1[CO]_{av.}} - \frac{2k_4[A]}{k_1[CO]_{av.}}
$$
If $2k_4/k_1[CO]_{av.} = a$ and $k_4[LCo^{2+}]_0/k_1[CO]_{av.} = b$, then

$$
\frac{d[B]}{d[A]} + a[B] = b - a[A]
$$

Multiplication of both sides by $e^{a[A]}$ and integration yields
 $[B]e^{a[A]} = b/a e^{a[A]} - e^{a[A]} ([A] - 1/a)$

$$
[B]e^{a[A]} = b/a e^{a[A]} - e^{a[A]} ([A] - 1/a)
$$

Substitution of the limits $([A] = [B] = 0$ at $t = 0$, and $[A] = A_{\infty}$, $[B] =$ $[B]_{\infty}$ at time ∞ , and $[B]_{\infty} + [A]_{\infty} = [Bu^tOOH]_{0}$, yields the final eqn. (6).

 \uparrow The values of k_2 are 52.0 (L¹) and 11.4 (L²) dm³ mol⁻¹ s⁻¹, irrespective of whether the reactions are run under Ar or Co.

 \ddagger Reaction (5) probably has a rate constant of (1-5) \times 10⁷ dm³ mol⁻¹ s^{-1} , similar to reactions of these cobalt complexes with alkyl radicals,⁴ and is therefore fast in comparison with other possible reactions of the radicals under experimental conditions.

described by the reaction scheme and eqn. (6). The value of k_1 is much larger in water than in the gas phase because solvation stabilises the polar acetyl radical. This also implies that k_1 might decrease significantly in less polar solvents.

The solid $[CH_3C(O)CoL(H_2O)](ClO_4)_2$ was prepared with both $L¹$ and $L²$ by visible light photolysis (300 W sun lamp) of an ice-cold 1 mmol dm⁻³ solution of $CH_3CoL(H_2O)^{2+}$ under comtant bubbling of CO. The complexes were purified by ion exchange and the yellow salts precipitated by the addition of solid NaClO₄. For $L = L^1$, λ_{max} 452 nm (ε 90.7 dm³ mol⁻¹ cm-I) and 319 (1190); 1H NMR, 6 1.48 (CH3), 13C NMR, *6* 32.7 (CH₃). For $L = L^2$, λ_{max} 472 nm (ε 81.0) and 324 (834). The presence of the $CH₃CO$ group, (and specifically not its hydrated form) was established by laser flash photolysis of $CH_3C(O)CoL^1(H_2O)^{2+}$ ($\lambda_{irradiation}$ 490 nm). The CH₃CO was identified by its known rate of hydration $(2 \times 10^4 \text{ s}^{-1})^7$ and by the subsequent reaction of $CH_3C(OH)_2$ with $C(NO_2)_4$.

The clean photochemistry of the acetyl complex makes it an excellent source of acetyl radicals, which until now had to be prepared by pulse radiolysis of $CH₃CHO$ for direct kinetic studies in aqueous solutions.⁷

This research was supported by the US Department of Energy, Office of Basic Energy Sciences. Chemical Sciences Division, under Contract W-7405-Eng-82.

Received, 2nd July 1991; Coin. 1f03284D

References

- 1 K. W. Watkins and W. W. Word, *Int. J. Chem. Kin.,* 1974,6,855; H. Fischer and H. Paul, *Acc. Chem. Res.,* 1987, 20, 200, and references cited therein.
- 2 K. I. Goldberg and R. *G.* Bergman, *J. Am. Chem. SOC.,* 1989,111, 1285.
- 3 D. D. Coffman, R. Cramer and W. E. Mochel, *J. Am. Chem. Soc.*, 1958, 80, 2882.
- 4 **A.** Bakac and J. H. Espenson, *Inorg. Chem..* 1989, 28,4319.
- *5* T. **S.** Roche and J. H. Endicott, *Inorg. Chem.,* 1974, **13,** 1575.
- h M. Erben-Russ, C. Michei, W. Bors and M. Saran, *J. Phys. Chem.,* 1987, **91,** 2362.
- 7 M. N. Schuchamann and C. von Sonntag, *1. Am. Chern.* SOC., 1988, 110,5698.
- 8 *Solubility Data Series, Carbon Monoxide,* ed. R. W. Cargill, Pergamon Press, Oxford, New York, 1990, p. 2. It was assumed that the presence of submillimolar concentrations of $(H_2O)_2CoL^{2+}$ and Bu^tOOH had no effect on the solubility of CO in H_2O .