Synthesis of Anthracyclinones *via* **o-Quinonoid Pyrones**

David W. Jones* and Christopher J. Lock

School of Chemistry, The University, Leeds LS2 9JT, UK

Dehydration of the acid **3** (R = H) with acetic anhydride at 80 "C generates the o-quinonoid pyrone **4** which can be trapped with several alkenes; the adduct 6 (R = Me, P = SiEt₃) and its 9-epimer from 2-triethylsilyloxypropene are readily transformed into (\pm) -auramycinone whilst those $[(6; R = \text{vinyl}, P = \text{SiEt}_3)$ and its 9-epimer] from 2-triethylsilyloxybuta-l,3-diene are readily converted into the methyl ethers **12, 13, 14** and **15** of which **12, 14** and **15** are known to be readily converted into (\pm) -aklavinone.

Derivatives of 2-benzopyran-3-one **1** are reactive Diels-Alder dienes which are useful building blocks for the assembly of aromatic steroids1 and lignans like podophyllotoxin.2 In addition the parent pyrone $\tilde{\mathbf{1}}$ has been used to prepare AB-ring analogues of anthracyclinones.3 Like Jung and his collaborators3 we have long cherished the view that anthracyclinones such as aklavinone $2 (R = Et)$ and auramycinone $2 (R = Me)$ could be prepared from the potentially tautomeric pyrone **4** along the lines outlined in Scheme 1. We now describe the reduction of this plan to practice.

The acid 3 $(R = H)$ was prepared by acid-catalysed hydrolysis of the methyl ester $3(R = Me)$, in turn available from 3-furoic acid and bromojuglone in six steps.4Attempts to generate and trap the pyrone **4** using our usual method (boiling acetic anhydride) were abortive but satisfactory yields of adducts could be secured by dehydration of $3 (R = H)$ in benzene-acetic anhydride at 80 "C in the presence of electron rich alkenes like norbornadiene and enol silyl ethers. Thus with 5 $(R = Me, P = SiEt₃)$ [†] (17.4 mol equiv.) the endo-OSiEt₃ adduct $6 (R = Me, P = SiEt_3)$ and its exo-OSiEt₃ isomer were obtained in a ratio of 2 : 1 and in a yield of 52%. There was also obtained a *ca.* 1 : 1 mixture of the adducts **7** (18% yield); these are most simply regarded as arising from the quinone methide tautomer **8** of the pyrone **4.** Model experiments using the 4,6-dideoxy congener of **4j:** and the ether **5** ($R = Et$, $P = SiMe₂Bu^t$) gave adducts derived from the *Z-* and E-forms of the double bond shift isomer of the starting alkene. Our planned route to aklavinone was therefore modified to involve adduction of 4 with the dienol ether $5(R =$ vinyl, $P = S_i E_t$. Trapping 4 with this diene proceeded efficiently (75% yield) and without formation of adducts of the type 7. The *endo-* and *exo-adducts* 6 ($R =$ vinyl, $P =$ SiEt₃) and its C-9 epimer (ratio $1:1$) were separated by crystallisation and fully characterised. **9** They were individually reduced (H₂/Wilkinson's catalyst) to give $6 (R = Et, P = SiEt₃)$ and its 9-epimer in high yield.

With a large excess of sodium methoxide (26 mol equiv.) in MeOH-CH₂Cl₂ **6** ($R = Et, P = SiEt$ ₃) gave, after a work-up involving brief treatment with diazomethane, a mixture of **9** $(R = Me)$ (49%) and **9** $(R = H)$ (9%) as well as 6% of the $\Delta^{7,8}$ alkene. Whilst the hydroxy ester arises *via* the usual acyl oxygen fission of the lactone the methoxy ester is most likely formed by elimination to the quinone methide carboxylate **10** which then adds methoxide to the less hindered β -face. Similar treatment of the C-9 epimer of $6 (R = Et, P = SiEt₃)$ gave the C-9 epimer of 9 $(R = Me)$ (13%) as well as 11 (49%), and alkenic product (8%). In marked contrast to the related tert-butyldimethylsilyl ether which only loses the protecting group under conditions which also cause extensive aromatisation of ring-A, the SiEt₃ ether 9 (R = Me) was smoothly deprotected (6% HF-H₂O in 2:1 CH₃CN-CH₂Cl₂, 20 °C, 2 h) to give the alcohol **12** in quantitative yield. Replacement of the C-7 β -methoxy group in this product by an α -hydroxy group was accomplished using trifluoroacetic acid4 to give (\pm) -aklavinone in 87% yield. For preparative purposes it is

t The correct choice of silyl protecting group is crucial; the trimethylsilyl group fails to withstand NaOMe ring opening of the lactones **6** whilst the tert-butyldimethylsilyl group strongly resists removal in the final stages of the synthesis. The triethylsilyl group served admirably in both these steps.

 $#$ Anthracyclinone numbering.

8 All new compounds have been characterised by IR, UV, 300 MHz ¹H NMR spectra, low resolution mass spectra and correct $(\pm 0.3\%)$ C, **H** microanalysis.

simplest to treat the mixture of hydrogenated adduct $6(R =$ Et, $P = SiEt_3$) and its C-9 epimer with NaOMe to give four products separated by chromatography into two pairs; $9 (R =$ Me) and its C-9 epimer forming one pair $(45\% , \text{ratio } 6:1)$ and 11 and its C-9 epimer forming the second pair (26%, ratio 6:1). Desilylation of the first pair (HF-H₂O-CH₃CN- $CH₂Cl₂$) gave 12 (70%) and 13 (21%). Desilylation of the second pair gave **14** (86%) and **15** (12%). Since **12, 14** and **15** are readily converted⁴ into (\pm) -aklavinone 2 (R = Et) this route constitutes an efficient total synthesis of aklavinone. In essentially the same way the adducts $6 (R = Me, P = SiEt_3)$ are transformed into (\pm) -auramycinone 2 $(R = Me)$. In

summary we have shown that the novel pyrone **4** can be generated and trapped efficiently despite its possible tautomerism *e.g.* with **8.** Its additions to dienol silyl ethers are highly chemo- and regio-selective but there is little *endo*preference shown between the silyloxy and vinyl (or alkyl) groups on the dienophile. The adducts \vec{b} ($R = \text{alkyl}$) undergo smooth ring opening with sodium methoxide probably *via* quinone methide intermediates rather than by acyl-oxygen fission as originally conceived and investigated in model experiments. 3.5 This is important as the C-9 epimers of the adducts **6** lacking a C-6 hydroxy group fail to undergo clean lactone ring opening with sodium methoxide.⁵ The availability of the quinone methide mechanism therefore allows utilisation of both the *endo* and the *exo*-OSiEt₃ compounds $[(6; R =$ Et, $P =$ SiEt₃) and its C-9 epimer].

Received, 24th July 1991; Corn. 1103796J

References

- 1 D. **A.** Bleasdale and D. W. Jones, J. *Chem. SOC., Perkin Trans. 1,* 1991, 1683.
- 2 D. W. Jones and **A.** M. Thompson, *J. Chem. SOC., Chem. Commun.,* 1987, 1797; 1988, 1095; 1989, 1371.
- 3 M. E. Jung, R. W. Brown, J. E. Hagenah and C. E. Strouse, *Tetrahedron Lett.,* 1984, **25,** 3659.
- 4 **B. A.** Pearlman, J. M. McNamara, I. Hasan, S. Hatakeyama, H. Sekizaki and **Y.** Kishi, J. *Am. Chem. SOC.,* 1981, **103,** 4248.
- *5* D. W. Jones and C. J. Lock, unpublished results.