Alkylation of (As, Sb, Bi)Cl₃: Formation of [(As, Sb, Bi)RCl₂], (E) -[BiR(CH₂CH=C)(SiMe₃)(C₅H₄N-2)] and 2-CH(SiMe₃)₂C₅H₄N-5-R [R = **C(SiMe3)2C5H4N-21**

Cameron Jones,^a Lutz M. Engelhardt,^b Peter C. Junk,^a David S. Hutchings,^b Wyona C. Patalinghug,^c Colin L. **Raston*aand Allan H. Whiteb**

^aDivision of Science and Technology, Griffith University, Nathan, Brisbane 4 I 1 I, Australia

b Department of Chemistry, The University of Western Australia, Nedlands, WA 6009, Australia

^c*Department of Chemistry, Delasalle University, Manila, The Philippines*

Monomeric alkyldichloro-antimony(iii) and -bismuth(iii) compounds [MRCI₂], R = C(SiMe₃)₂C₅H₄N-2', and the thermally unstable arsenic(iii) analogue are accessible from the appropriate group 15 trichloride and LiR in diethyl ether; treating BiCl₃ with two and three equivalents of LiR in tetrahydrofuran (THF) yields (E) -[BiR(CH₂CH=C)(SiMe₃)(C₅H₄N-2)] where the C₂ insertion-SiMe₃ elimination fragment originates from THF, and the 'head-to-tail' alkyl coupled species, 2 -CH(SiMe₃)₂C₅H₄N-5-R.

Antimony(III) and bismuth (III) mixed hydrocarbyl-halide compounds tend to be oligomeric or polymeric with bridging halides as in MCl₃,¹⁻³ unless the hydrocarbyl group is bulky,⁴ and for bismuth there are few studies on such compounds^{3,4} unlike for the lighter group 15 elements where they have been of interest as precursors to lower valent/multiple bonded species.5 **As** part of a systematic study of the main group chemistry of the highly hindered ligand $C(SiMe₃)₂C₅H₄N-2^{6,7}$ we have developed some antimony (III) and bismuth (III) chemistry, and for comparison, some arsenic(II1) chemistry, and report the results herein.

Noteworthy features of our studies include *(i)* the formation of alkyldichloro metal-metalloid(III) species, $[MRCl_2]$, M =

As, **la**, $M = Sb$, **lb**, $M = Bi$, **lc**, $R = C(SiMe₃)₂C₅H₄N-2$, which have monomeric structures in the solid, **lb** and **lc;** *(ii)* instability of 1a, slowly eliminating CISiMe₃, and rapid formation of CISiMe₃ even at 0° C while attempting to prepare the analogous PI11 compound using the same procedure as for preparing **(la+),** *viz* LiR and MCl,; *(iii)* instability of the dialkylchloro species, MR_2Cl , $M = Sb$ and Bi, yielding for bismuth a substituted allyl, (E) -[BiR(CH₂CH=C)a substituted allyl, (E) -[BiR(CH₂CH=C)-(SiMe3)(C5H4N-2)], **2** (structurally authenticated) with THF as an implied reactant; and *(iv)* formation of the 'head-to-tail' coupled dialkyl, 2-CH(SiMe₃)₂C₅H₄N-5-R, 3, while attempting to trialkylate BiCl₃.

Synthetic procedures for $(1a-c)-3$ are summarised in

Scheme 1.[†] The alkyldichloro species have significantly different thermal stabilities; compound **la** decomposes at *ca.* 20 "C over several hours and **lb** can be sublimed at 200-210 "C, *ca.* 0.2 mbar whereas **lc** decomposes under the same conditions and unlike the antimony compound is photosensitive yielding bismuth mirrors from THF solutions. The coordination environment of 1b# is strongly affected by a stereochemically active lone pair of electrons, Fig. 1, and can be considered as a distorted trigonal bipyramid with the Cl(1), C(6), Sb and the lone pair of electrons approximating to a trigonal plane. The Sb-Cl, C distances are unexceptional2 whereas the Sb–N distance at 2.371(7) \AA is long,⁸ reflecting the steric strain associated with a four-membered chelate ring. The bismuth analogue **1c** has a similar structure,⁹ and the arsenic compound, **la,** is most likely monomeric, albeit with a long metalloid-N distance based on electronegativity con-

t *Synthesis and characterization* Compound **la:** LiR7 (1.06 g, 6.58 mmol) in OEt₂ (20 ml) was added over 15 min with stirring to $AsCl₃$ (1.18 g, 6.50 mmol) in OEt₂ (50 ml) at -80 °C. On warming to room temperature the mixture was filtered and the volume reduced *in vucuo* (ca. 20 ml) and cooled overnight to -30 °C yielding colourless crystals 6.73, 6.92, 7.73 (4 \times 1H, m, $H_{4,3,5,6}$); ¹³C NMR (62.8 MHz) δ 1.3 *(CH₃)* **50.9** (Si*CC*) **119.8**, **122.6**, **136.8**, **145.2**, **164.0** (*C*_{5,3,4,6,2).} (1.36 g, *55%);* 1H NMR (250 MHz, C6D6) *6* 0.29 (18H, **S,** CH3) 6.38,

Compound **lb:** Details as for **la** (70% yield, m.p. 137-139 "C); lH \times 1H, m, $H_{4,3,5,6}$); ¹³C NMR (62.8 MHz) δ 2.3 (CH₃) 51.3 (SiCC) NMR (250 MHz, C₆D₆) δ 0.29 (18H, s, CH₃) 6.30, 6.67, 6.87, 7.47 (4 120.7, 125.9, 138.5, 145.0, 166.7 *(C,,,,,,,,,).*

Compound **lc:** LiR (0.98 g, 4.03 mmol) in OEt, (100 ml) was added over 15 min with stirring to BiCl_3 (1.26 g, 4.0 mmol) in OEt_2 (100 ml) at -80 °C. On warming to room temperature the mixture was filtered, volatiles removed in vacuo and the product recrystallised from toluene as yellow prisms (0.91 g, 44% yield, m.p. 194 °C); ¹H NMR (80 MHz, C_6D_6) δ 0.3 (18H, s, CH₃) 6.8, 7.3, 8.1, 8.8 (4 \times 1H, m, H_{4,3,5,6});¹³C NMR (20.1 MHz) *6* 3.3 **(CH3)** 69.9 (SiCC) 116.7, 121.7,136.3,144.1, 175.5 ($C_{5,3,4,6,2}$); MS m/z 515 (M⁺). Satisfactory elemental analyses were obtaind for compounds **lb** and *c.*

Compound 3 : LiR (2.57 g, 14.7 mmol) in OEt₂ (30 ml) was added over 15 min with stirring to \overline{B} iCl₃ (1.55 g, 4.9 mmol) in OEt₂ (100 ml) at -80 °C. The resulting red solution was brought to -15 °C, filtered, the volume reduced *in vacuo* (ca. 20 ml) and cooled overnight to -30 "C yielding colourless crystals (0.58 g, 25%, m.p. *85-89* "C); lH NMR 6.8-8.6 (7H, m, *CH);* I3CNMR (62.8 MHz) *6* 0.29,0.46 (SiCH3) 32.2, 42.5 (CSiMe3) 119.4, 120.2, 123.4, 124.3, 135.5, 137.1, 148.2, 149.2, 160.5, 163.1 (C_{aromatic}). $(250 \text{ MHz}, \text{C}_6\text{D}_6)$ δ 0.10, 0.18 (2 × 18H, s, CH₃) 1.45 (1H, s, SiCH)

CAUTION: The toxicity of these compounds and any degradation products is unknown.

 $C(2)$ $C(3)$ $C(1)$ Ю $C(4)$ N $C(5)$ ₹ $Cl(1)$

Sb

 $Cl(2)$

 (a)

 $C(12)$

 $Si(1)$

 $C(13)$

 $C(23)$

 $C(6)$

 $C(21)$

O

 $Si(2)$

 $C(11)$

 $C(22)$

┌

Fig. 1 Molecular projections of *(a)* [SbRCl₂], **1b** and *(b)* $E\text{-}[BiR(CH_2CH=C)(\text{SiM}e_3)(C_5H_4N-2)]$, 2, showing 20% thermal ellipsoids for the non-hydrogen atoms, and arbitrary radii for hydrogen atoms. Selected bond distances (Å) and angles (°): 1b Sb-C1(1,2) 2.373(2), 2.469(2); Sb-N 2.371(7); Sb-C(6) 2.213(5); $Cl(1)$ -Sb-Cl(2) 92.89(8); $Cl(1)$ -Sb-N 87.5(1); $Cl(1)$ -Sb-C(6) 101.4(1); Cl(2)-Sb-N 159.4(2); C1(2)-Sb-C(6) 98.4(2); N-Sb-C(6) 61.4(2). **(2)** Bi-C1 2.646(4); Bi-N(A) 2.485(9); Bi-C(A6) 2.41(1); Bi-C(B8) 2.23(2); C(B7)-C(B8) 1.49(2); C(B7)-C(B6) 1.38(2); Cl-Bi-N(A) $156.7(3)$; Cl-Bi-C(A) $100.7(3)$; Cl-Bi-C(B8) 84.9(3); N(A)-Bi-C(A6) 58.5(4); N(A)-Bi-C(B8) 91.7(4); C(A6)-Bi-C(B8) 108.3(5); Bi-C(B8)-C(B7) 117.6(7); C(B8)-C(B7)-C(B6) 125(1); $C(B7) - C(B6) - C(B5)$ 121(1); $C(B7) - C(B6) - Si(B)$ 117.6(9); $C(B5) C(B6) - Si(B) 121(1)$.

siderations; in a phosphorus(III) compound $[PCPh₂(C₅H₄N-2)$ - $(\eta^2-C_8H_8)$] where the ligand closely resembles R there is no P...N interaction.¹⁰

Attempts at preparing $MR₂Cl$ species were unsuccessful; for arsenic and antimony there was rapid loss of ClSiMe₃

Fig. 2 Molecular projection of **3**

yielding intractable oils but for bismuth a red crystalline solid was isolated from THF solutions below 0° C. Above 0° C it decomposes over several minutes yielding orange crystals of compound **2** in low yield which proved difficult to separate from black powder, and recrystallisation from THF or toluene resulted in further deposition of black powder. Single crystals of **2** were characterised using mass spectrometry *{m/z* **190[CH2C(H)=C(SiMe3)(C5H4N)+],** 209 [Bi+], 236 [R+], 426 [M - BiCl+]} and a structure determination using diffraction data.[#] Here the metal centre also has a distorted trigonal bipyramidal structure with a stereochemically active lone pair, Bi, $C((A6), C(B8)$ in the trigonal plane, Fig. 1, and is thus related to the structure of **lb** by interchanging Cl(1) with $C(B8)$. The N(B) to Bi interaction is minimal, Bi-N 2.95(2) Å, which is at odds with the tendency for bismuth compounds to achieve high coordination numbers with pyridine ligands, *e.g.*

 \ddagger *Crystal structure determinations* (*T* = 295 K; Syntex P_{21} diffractometer, crystals mounted in capillaries). Compound **lb:** $C_{12}H_{22}$ NSbClSi₂, $M = 429.2$, orthorhombic, space group *Pna*2₁, $a =$ 13.702(3), $b = 12.218(3)$, $c = 10.782(3)$ Å, $U = 1805$ Å³, $F(000) =$ 856, $Z = 4$, $D_c = 1.58$ g cm⁻³, μ (Mo-K α) = 18.0 cm⁻¹, A^{*}_{min,max} 1.29, 1.52, specimen $0.40 \times 0.20 \times 0.15$ mm, 1682 unique reflections, 1492 with $I > 3\sigma(I)$ used in the refinement, $2\theta_{\text{max}} = 50^{\circ}$; $R = 0.024$, $R_w =$ 0.026. Compound 2: $C_{22}H_{38}N_2BiClSi_3$, $M = 659.3$, monoclinic, space group $P2_1/c$, $a = 11.303(5)$, $b = 15.380(4)$, $c = 18.932(8)$ Å, $\beta =$ 118.11(3)^o, $U = 2903$ Å³, $F(000) = 1304$; $Z = 4$, $D_c = 1.51$ g cm⁻³, $\mu(Mo-K\alpha) = 60 \text{ cm}^{-1}$, $A^*_{\text{min,max}}$ 3.5, 16.5, specimen 0.35 \times 0.6 \times 0.5 mm, 5108 unique reflections, 2914 with $I > 3\sigma(I)$ used in the refinement, $2\theta_{\text{max}} = 50^{\circ}$; $R = 0.059$, $R_w = 0.044$. Compound 3: $C_{24}H_{44}N_2Si_4$, $M = 473.1$, monoclinic, space group $P2_1/c$, $a = 13.29(1)$, $b = 13.02(1), c = 17.826(5)$ Å, $\beta = 105.75(8)$ ^o, $U = 2968$ Å³, $F(000) =$ 920, $Z = 4$, $D_c = 1.06$ g cm⁻³, μ (Mo-K α) = 1.8 cm⁻¹ (no absorption correction), specimen $0.20 \times 0.20 \times 0.08$ mm, 2556 unique reflections, 1533 with $I > 3\sigma(I)$ used in the refinement $2\theta_{\text{max}} = 40^{\circ}$; $R = 0.043$, $R_w = 0.042$.

Atomic coordinates, bond lengths and bond angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

seven coordination in $[BiI_2(NC_5H_5)_3(S_2CNEt_2)]$,¹¹ and must arise from the geometrical constraints of the pyridyl group itself and of the allyl plane of the potentially bidentate ligand. The Bi-N(A) distance, 2.485(9) \AA , is much shorter than in $[BiI_2(NC_5H_5)_3(S_2CNEt_2)]$,¹¹ 2.663(3)-2.728(3) Å, as expected for a lower coordination number in **lb,** but is longer than for anionic N-centred ligands such as in $[\text{Bi}(NPh_2)_3]$, 2.12(2)is long and is more akin to Bi-C distances for the π -system, $BiEtCl₂$ ³ and reflects the steric hindrance of R-strain in the four-membered chelate ring; metal-carbon distances in the related compound bearing bulky groups, $[Bi\{CH(SiMe₃)₂\}$, are 2.31(1)-2.35(1) **A.13** The Bi-C distance for the allyl group, 2.23(2) A, is at the lower limit for less congested metal centres.⁴ The Bi-Cl distance is unexceptional,³ as is the geometry of the allyl moiety. The origin of the modified ligand in 2 involves THF, most likely *via* loss of $CH_2=ClH)OSiMe₃$ possibly associated with a BiV intermediate, for example, derived from oxidative addition of Bi^{III} across C-O of THF. 2.28(2) Å.¹² The Bi–C distance for the chelate ring, 2.41(1) Å,

Similarly attempts at forming $BiR₃$ resulted in decomposition (> -30 °C) to a black solid and colourless crystals of 3, characterised by NMR spectroscopy and an X-ray structure determination, Fig. 2.\$ Formation of **3** presumably arises from reductive elimination and/or nucleophilic attack of a coordinated R followed by rearrangement. It is unlikely that radical intermediates which subsequently associate-rearrange are involved since this would give 'tail-to-tail' coupling (4,4' coupling of pyridyl rings)6 rather than 'head-to-tail' as in the present case.

We thank the Australian Research Council for support of this work.

Received, 12th July 1991; Corn. 1/03556H

References

- 1 N. N. Greenwood and A. Earnshaw, *Chemistry* of *the Elements,* Pergamon Press, 1989, Oxford, ch. 13, pp. 653, 697.
- \mathfrak{D} W. Frank, J. *Organomet. Chem.,* 1991, 406, 331.
- 3 W. Frank, J. *Organomet. Chem.,* 1990, 386, 177.
- 4 K. H. Whitmire, D. Labahn, H. W. Roesky, M. Nolemeyer and G. Sheldrick, J. *Organomet. Chem.,* 1991,402,55, and references cited therein.
- 5 For example A. H. Cowley, *Polyhedron,* 1984, 3, 389.
- 6 U. Kynast, **B.** W. Skelton, A. H. White, M. J. Henderson and C. L. Raston, J. *Organomet. Chem.,* 1990,384, C1.
- 7 T. van den Ancker, B. **S.** Jolly, M. F. Lappert, C. L. Raston, B. W. Skeltonand **A.** H. White, J. *Chem. SOC., Chem. Commun.,* 1990,1006; M. J. Henderson, R. I. Papsergio, C. L. Raston, A. H. White and M. F. Lappert, J. *Chem. SOC., Chem. Commun.,* 1986, 672; L. M. Engelhardt, B. **S.** Jolly, **M.** F. Lappert, C. L. Raston and A. H. White, J. *Chem. SOC., Chem. Commun.,* 1988, 336; L. M. Engelhardt, U. Kynast, C. L. Raston and A. H. White, *Angew. Chem., Znt. Ed. Engl.,* 1987, 26, 681.
- 8 U. Patt-Siebel, U. Miiller, C. Ergezinger, G. Borgsen, K. Dehniche, D. Fenshe and G. Baum, Z. Anorg. Allg. Chem., 1990, **582,** 30.
- 9 L. M. Engelhardt, D. **S.** Hutchings, C. L. Raston and A. H. White, unpublished results.
- 10 D. **S.** Hutchings, P. C. Junk, W. C. Patalinghug, C. L. Rastonand A. H. White, J. *Chem. SOC., Chem. Commun.,* 1989, 973.
- 11 C. L. Raston, **G.** L. Rowbottom and A. H. White, J. *Chem. SOC., Dalton Trans.,* 1981, 1379, 1383.
- 12 W. Clegg, N. A. Compton, R. J. Errington, N. C. Norman and N. Wishart, *Polyhedron,* 1989, 8, 1579.
- 13 B. Murray, J. Hvoslef, H. Hope and P. P. Power, *Inorg. Chem.*, 1983, 22, 3421.