Carbon-Hydrogen Activation in a 1,3-Diene Coordinated onto a Molybdenum(ii) Centre

Michael Green,^a Mary F. Mahon, a,b Kieran C. Molloy, b Caroline B. M. Nation a,b and Christopher M. **Woolhousea**

^aDepartment of Chemistry, King's College London, Strand, London WC2R ZLS, UK b School of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

Trimethyl phosphite reacts selectively with [BrMo=C(Me)CHMe(η^2 -MeC₂Me)(η^5 -C₅H₅)][BF₄] to form the X-ray crystallographically identified η^4 (5e)-butadienyl cation

 $[BrMo=C(Me)-n^3-(C(Me)C(Me)CHMe){P(OMe)_3}(n^5-C_5H_5)][BF_4]$, which in turn reacts with Bus₂AIH to form the 1,3-diene complex $[BrMo{\{\eta^4\text{-}CH(Me)}\text{=}C(Me)C(Me)\text{=}C(H)Me}{\{P(OMe)_3\{\eta^5\text{-}C_5H_5\}}\}$; this unexpectedly reacts regioselectively with $[Ph_3C][BF_4]$ to regenerate the parent $\eta^4(5e)$ -butadienyl cation with significant implications for alkenic C-H activation.

In developing the chemistry of organic molecules coordinated onto transition metal centres the reactions of 1,3-dienes have played an important role.1 Despite these developments and also a considerable general concern with alkenic C-H activation,2 it is interesting to note that there are no reports of reactions involving the activation of the terminal alkenic carbon-hydrogen bonds of coordinated 1,3-dienes. In exploring the reaction chemistry of cationic molybdenum η^4 (5e)butadienyl complexes we have discovered the first example of such an unusual reaction.

We have previously³ shown that protonation of the complexes $[MoX(\eta^2-MeC_2Me)_2(\eta^5-C_5H_5 \text{ or } \eta^5-C_9H_7)]$ (X=Cl, Br, I) affords the cations $[XMo=C(Me)CHMe(\eta^2-MeC_2Me)$ - $(\eta^5$ -C₅H₅ or η^5 -C₉H₇)][BF₄], which on treatment with PR₃ (R=Me, or OMe) undergo C-C coupling reactions to form η^4 (5e)-butadienyl complexes of the type [XMo=C(Me)- η^3 - ${C(Me)C(Me)CHMe}$ $(PR_3)(\eta^5-C_5H_5)$ or $\eta^5-C_9H_7)$ [BF₄]. In developing the chemistry of these species it was clearly of interest to attempt to transform the C_4 butadienyl fragment into a 1,3-diene by delivering a nucleophile to the α or carbenoid carbon atom.[†] However, reaction $[0^{\circ}C,$ thf (tetrahydrofuran)] of, for example, $[BrMo=C(Me)-\eta^3 {C(Me)C(Me)CHMe} {P(OMe)₃}{(\eta^5-C_5H_5)[BF_4]}$ **1** with K[BHBus3] afforded a mixture of two products **(2** and **3,** see Scheme 1) in a ratio **of** 1:3. Examination **of** the 1H and ^{13}C -{H} NMR spectra‡ showed that the major product was the required 1,3-diene substituted complex $[MoBr\{n^4\}]$ $CH(Me)=C(Me)C(Me)=C(H)Me$ ${P(OMe)_3}(n^5-C_5H_5)$ the minor product being the σ, η^3 -(4e)-bonded vinylallene substituted molecule $[MoBr{\{\sigma,n\}}-CH(Me)C(Me)C(Me)]$ $CCH₂$ {P(OMe)₃}(η ⁵-C₅H₅)] **2**. In order to improve the regioselectivity of this reaction a less proton basic source of H^{-1} was sought. This was provided by diisobutylaluminium hydride. Reaction (thf, -78 to 25 °C) of [BrMo=C(Me)- η ³- ${C(Me)C(Me)CHMe}$ { $P(OMe)₃$ (η ⁵-C₅H₅)][BF₄] **1** with a molar equivalent of Bu^s₂AlH afforded selectively, and in good

t It is interesting that EHMO calculations (R. Deeth and C. B. M. Nation) suggest that such a reaction should occur on C_{α} under frontier orbital control.

 \ddagger Selected spectroscopic data for **1**: NMR ¹H(CD₃NO₂), δ 5.86 [d, 5H, C_5H_5 , $3J(Ph)$ 1.6 Hz], 3.89 [d, 9H, POMe, $3J(Ph)$ 10.4 Hz], 2.70 [d, 3H, Mo=C(Me), 4J(Ph) 7.0 Hz], 2.65 [m, lH, CHMe, 3J(MeH) 5.9 Hz], 2.35 *(s,* 3H, MeC), 2.23 (s, 3H, MeC), 2.17 [d, 3H, MeCH, 3J(MeH) 5.9 Hz]; 13C-{lH} (CD3N02), 6305.5 [d, Mo=C, 2J(PC) 23.5 Hz], 132.5 (CMe), 108.4 (CMe), 101.3 (C₅H₅), 73.4 (CHMe), 57.2 [d, POMe, ²J(PC) 10.5 Hz), 29.5 [d, Mo=CMe, ³J(PC) 2.7 Hz] 18.0 (CMe), 16.0 (CMe), 15.1 [d, CHMe, ³J(PC) 1.9 Hz]; ³¹P{¹H} (CD_2Cl_2) , δ 119.0 (POMe).

Compound **3**: NMR ¹H(C₆D₆), δ 4.54 [d, 5H, C₅H₅, ³J(PH) 1.3 Hz], 3.37 [d, 9H, POMe, 3J(PH) 9.6 Hz], 2.35 [d, 3H, C(Me), 4J(PH) 2.0 Hz], 2.24 (s, 3H, C(Me)], 1.89 [d, 3H, CH(*Me*), ³*J*(MeH) 6.1 Hz], 1.29 [d, 3H, CH(Me), $3J(MeH)$ 6.1 Hz], 1.25 [apparent quintet, 1H, $CH(Me)$, $3J(MeH) \approx 3J(PH)$ 6.2 Hz], 0.43 [apparent quintet, [1H, $CH(Me)$, $3J(MeH) \approx 3J(PH)$ 6.3 Hz]; $13C^{-1}H$ (C₆D₆), 8 116.3 (CMe) , 112.2 (CMe) , 89.9 (C_5H_5) , 60.6 $(CHMe)$, 57.6 $(CHMe)$, 53.6 [d, POMe, ²J(PC) 9.0 Hz], 17.0 (CMe), 16.8 (CHMe), 16.1 (CMe), 15.4 (CHMe); ${}^{31}P_{1}{}^{1}H$ }(CD₂Cl₂), δ 143.8 (POMe).

Scheme 1 Reagents: i, HBF_4E_2O , CH_2Cl_2 ; ii, $P(OME)_3$, CH_2Cl_2 ; iii, K[BHBu^s₃], thf; iv, Bu^s₂AlH, thf; v, [Ph₃C][BF₄], CH₂Cl₂

Scheme 2 Reagents: i, + $[Ph_3C][BF_4]$, $-Ph_3C$; ii, + Ph_3C , $-Ph_3CH$

Fig. 1 Molecular structure of the cation part of **1** showing the labelling scheme used in the text. All hydrogen atoms have been omitted for clarity. Selected bond lengths (\tilde{A}) and angles (°): Mo(1)-Br(1) 2.648(3), Mo(1)-P(1) 2.496(6), Mo(1)-C(9) 2.34(2), Mo(1)-C(10) 2.44(2), Mo(1)-C(11) 2.35(2), Mo(1)-C(12) 1.94(2), C(9)-C(10) 1.34(3), C(10)-C(11) 1.40(3), C(11)-C(12) 1.40(3); C(12)-Mo(1)- $122(2)$, C(10)-C(11)-C(12) 114(2), Mo(1)-C(9)-C(10) 78(1), Mo(1)- $C(12)-C(11)$ 88(1). Br(1) 136.9(7), C(12)-Mo(1)-C(9) 76.8(8), C(9)-C(10)-C(11)

yield (75%), the purple crystalline air-sensitive endo-n⁴-cis-**2,3-dimethylhexa-2,4-diene** complex **3,\$** which was structurally characterised by NMR spectroscopy. The relative position of the two 1,3-diene hydrogen substituents was determined by nuclear Overhauser enhancement (NOE) difference spectroscopy, the presence of a strong interaction indicating that both hydrogens occupy 'inside' positions as illustrated.\$

When a solution of the 1,3-diene complex **3** in dichloromethane was treated at room temperature with a molar equivalent of trityl tetrafluoroborate there was a rapid change in colour from purple to orange and addition of diethyl ether resulted in the precipitation in good yield of the parent orange crystalline q4(5e)-butadienyl complex **1.**

This last reaction is most unusual and involves an unprecedented formal hydride abstraction by the trityl cation from one of the terminal diene C-H bonds. In order to clarify

the regiochemistry of this reaction a single crystal X-ray diffraction study^{\parallel} was undertaken on the parent $\eta^4(5e)$ butadienyl cation **1.** The molecular geometry of the cation is shown in Fig. 1. This shows that the butadienyl ligand adopts an endo-type geometry where the hydrogen substituent attached to $\tilde{C}(9)$ points towards the η^5 -C₅H₅ ligand, *i.e.* is in an 'inside' position. The bromine substituent is *trans* to the carbon atom $C(12)$, which is clearly double bonded [Mo(1)- $C(12)$ 1.94(2) Å to the metal centre, the other three butadienyl carbons showing longer Mo–C distances $[Mo(1)$ – more compatable with a η^3 -allylic bonding mode. C(11) 2.35(2), Mo(1)–C(10) 2.44(2), Mo(1)–C(9) 2.34(2) Å]

This clearly shows that in the reaction of 1 with Bu^2AlH , H^- ' selectively adds to the carbenoid carbon $C(12)$ to give a 1,3-diene with both hydrogens in the 'inside' position, and that significantly the formal hydride abstraction reaction is also regioselective, the C-H bond of the 1,3-diene *trans* to the bromine ligand being preferentially activated and abstracted. We suggest (see Scheme 2) that hydride is not actually directly abstracted and the trityl cation is acting initially as a one-electron oxidant transforming **3** into the radical cation **4.** It is this odd electron (17e) species **4** which then undergoes C-H bond cleavage. This could occur either by direct attack by the radical Ph₃C· on an alkenic C-H *trans* to bromine, or, more likely, by the alkenic C-H bond of the 1,3-diene adding oxidatively to the molybdenum centre followed by H_1 abstraction from the metal.

The suggestion that alkenic C-H activation can be facilitated by an initial one-electron oxidation4 has interesting implications, while the ability to transform a η^4 -cis-1,3-diene ligand into a reactive $\eta^4(5e)$ -butadienyl is also potentially important from a synthetic standpoint.

We thank the SERC for support and for studentships (C. B. M. N. and C. M. W.).

Received, *27th June 1991; Corn. 11032050*

References

- 1 J. P. Collman, L. **S.** Hegedus, J. R. Norton and R. G. Finke, *Principles and Applications of Organotransition Metal Chemistry,* University Science Books, Mill Valley, **CA,** 1987.
- 2 P. O. Stoutland and R. G. Bergman, *J. Am. Chem. Soc.*, 1988, 110, 5732, and references cited therein.
- 3 G. C. Conole, M. Green, M. McPartlin, C. Reeve and C. M. Woolhouse, J. *Chem. SOC., Chem. Commun.,* 1988, 1310.
- 4 Although there are now several known examples of C-H bond cleavage induced by oxidation (see, N. G. Connelly, *Chem. SOC. Rev.,* 1989, 153; and references cited therein) there are no reported cases of such reactions with alkenic or 1,3-diene C-H bonds. It is possible that the transformations $3 \rightarrow 4 \rightarrow 1$ are facilitated by spin delocalisation *via* the developing metal to carbon double bond.

 \int *Crystal data* for: C₁₆H₂₇O₃BF₄PBrMo, *M* = 561.0, monoclinic, *a* = 12.429(7), $b = 11.408(3)$, $c = 15.719(7)$ Å, $\beta = 109.87(4)$ °, $U = 2096.1$ \AA ³, space group $P2_1/c$, $Z = 4$, $D_c = 1.78$ g cm⁻³, μ (Mo-K α) = 25.35 cm^{-1} , $F(000) = 1120$. Data were measured at room temperature on a Hilger and Watts Y290 four-circle diffractometer in the range $2 \le \theta \le$ 24". 3600 reflections were collected of which 1858 were unique with $I \geq 3$ $\sigma(I)$. Data were corrected for Lorentz and polarization effects but not for absorption. In the final least-squares cycles the molybdenum, bromine, phosphorus, boron and fluorine atoms were allowed to vibrate anisotropically. All other atoms were treated isotropically . Hydrogen atoms were included at calculated positions where appropriate. The cation and the anion were refined as two separate blocks with 104 and 46 variable parameters respectively. Finally residuals after 16 cycles of least-squares were $R = R_w = 0.0890$, for unit weights. Maximum final shift/esd was 0.003. The maximum and minimum residual densities were 0.86 and -0.73 e \AA^{-3} , respectively in the region of the molybdenum atom and as such have no chemical significance. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

⁵ This structural assignment is supported by the observation that reaction of Bu_sAlH with the mixture (1:6) of isomeric cations [BrMo=C(Me)- η ³-{C(Me)C(Me)CHMe}(PMe₃)(η ⁵-C₉H₇)]- $[BF₄]$ (differing only with respect to the relative positions of the PMe₃ ligand and Mo=C bond) affords only *one* 1,3-diene complex [BrMo- ${\eta^4}$ -CH(Me)=C(Me)C(Me)=C(Me)H)(PMe₃)(${\eta^5}$ -C₉H₇)], in which the CHMe¹H resonances exhibit a significant upfield shift relative to the η^5 -C₅H₅ complex.