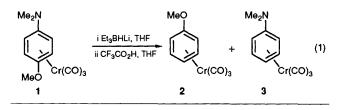
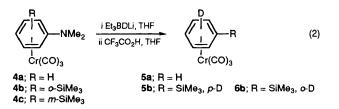
Hydrodeamination of *N*,*N*-Dimethylaminoarenetricarbonylchromium Complexes via cine and tele-meta Nucleophilic Aromatic Substitutions

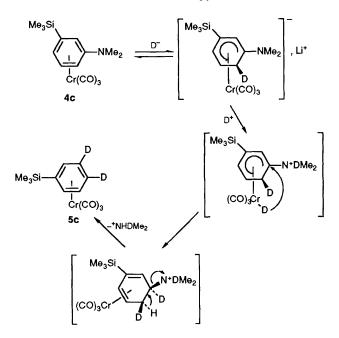

Jean-Pierre Djukic, Françoise Rose-Munch and Eric Rose

Université P. et M. Curie, ¹.aboratoire de chimie organique associé au CNRS, 4 Place Jussieu, Tour 44–45, 75252 Paris Cedex 05, France

Treatment of N, N-dimethylaminoarenetricarbonylchromium complexes with Et₃BDLi gives after CF₃CO₂H treatment arenetricarbonylchromium complexes via cine and tele-meta nucleophilic aromatic substitutions which correspond to an unprecedented aromatic carbon–tertiary amine nitrogen cleavage.


We recently described¹ that hydrides such as Et_3BHLi or $LiAlH_4$ can cleave the carbon–oxygen bond of arylethertricarbonylchromium complexes *via* an *ipso*² aromatic substitution. Such a cleavage of an aryl–oxygen bond is well documented in organic chemistry.³ In extending this reaction to the case of *p*-methoxy-*N*,*N*-dimethylanilinetricarbonylchromium complex, we obtained not only the cleavage of this C–O bond but unexpectively also the rupture of the C–N bond. We now report this unprecedented cleavage of an aryl–nitrogen bond of aminoarenetricarbonylchromium complexes by Et_3BDLi and some data relating to the mechanism of this hydrodeamination reaction. Herein we describe the results obtained with Et_3BDLi as nucleophile but analogous products are formed in the case of Et_3BHLi .

p-Methoxy-*N*,*N*-dimethylanilinetricarbonylchromium complex 1 [eqn. (1)] gives a mixture of the anisole (34% yield) and aniline (23% yield) derivatives 2 and 3 (ratio 60:40) after treatment with Et₃BHLi (5 equiv., 3 h, room temperature) and CF₃CO₂H [eqn. (1)].[†]



[†] Typical reaction procedure: To an anhydrous THF solution of a substituted N,N-dimethylaminoarenetricarbonylchromium complex is added a known excess of Et₃BDLi (1 mol dm⁻³ in THF, Aldrich, 1 to 5 equiv.) at room temperature. The reaction mixture is stirred for several hours under dry nitrogen and added dropwise to a THF solution of CF₃CO₂H in excess. After extraction, neutralization and separation by silica gel flash chromatography of the crude mixture the deuteriodeamination product is obtained and recrystallized in a mixture of acetone and light petroleum.

Addition of Et₃BDLi to a tetrahydrofuran (THF) solution of N, N-dimethylanilinetricarbonylchromium complex 4a yields monodeuteriobenzenetricarbonylchromium 5a (23% yield), after CF_3CO_2H treatment [eqn. (2), R = H] and the starting substrate 4a. In order to shed light on the regioselectivity of this substitution, we tried the same reaction with o-trimethylsilyl-N, N-dimethylanilinetricarbonylchromium complex 4b[‡] in order to obtain deuteriated trimethylsilyltricarbonylchromium: the ¹H NMR spectrum of which being known to be first order resolved,⁴ should give the answer. In fact, addition of Et₃BDLi to a THF solution of complex 4b [eqn. (2), R = o-SiMe₃] leads to the formation of complexes 5b and 6b‡ (ratio 20:80, 55% yield) both resulting from tele-meta nucleophilic aromatic substitution, a reaction for which we have previously discovered the mechanism in the case of phenoxyarenetricarbonylchromium complexes.5

[‡] Satisfactory spectral and analytical data have been obtained for all new compounds. ¹H NMR (CDCl₃), 200 MHz, Bruker AC for **4b**: δ 0.36 (SiMe₃, 9H, s), 2.63 (NMe₂, 6H, s), 4.91 (H-5, t, ³J 6 Hz), 4.94 (H-3, d, ³J 6 Hz), 5.49 (H-6, dd, ³J 6 and ⁴J 1 Hz), 5.60 (H-4, td, ³J 6 and ⁴J 1 Hz); for **4c**: 0.30 (SiMe₃, 9H, s), 2.87 (NMe₂, 6H, s), 4.72 (H-2, s), 4.81 (H-6, d, ³J 7 Hz), 4.95 (H-4, dd, ³J 7 and ⁴J 2 Hz), 5.55 (H-5, t, ³J 7 Hz); for **5b**: 0.28 (SiMe₃, 9H, s), 5.17 (H-3,5, d, ³J 6 Hz); 5.41 (H2-6, 2H, d, ³J 6 Hz); for **6b**: 0.28 (SiMe₃, 9H, s), 5.17 (H-3,5, dt, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz), 5.49 (H-4, t, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.49 (H-4, t, ³J 6 Hz); 5.41 (H-6, d, ³J 6 Hz); 5.41 (H-6, d) (H-6,

The same experiment carried out with the *meta* isomer 4c; affords complex 5b; [38% yield, eqn. (2), R = p-SiMe₃]. If CF₃CO₂D is used, complex 5c is obtained which results from the incorporation of a second deuterium at the *meta* position

relative to the SiMe₃ group. These data demonstrate clearly that a *cine* S_NAr^6 reaction occurred and allow us to suggest the following speculative mechanism for the formation of the dideuteriated complex **5c** (Scheme 1).

In conclusion, our preliminary results clearly show that the cleavage of an aryl-nitrogen bond is possible if aminoarenetricarbonylchromium complexes are treated with Et₃BHLi. Using Et₃BDLi, it was possible to ascertain that these unexpected deuteriodeamination reactions proceed *via cine* and *tele-meta* nucleophilic aromatic substitutions. These unprecedented substitutions, even if the yields are not yet impressive, represent the first cleavage of the bond between an aromatic carbon and the nitrogen of a tertiary amine in chemistry.

Received, 5th July 1991; Com. 1/03401D

References

- 1 F. Rose-Munch, J.-P. Djukic and E. Rose, *Tetrahedron. Lett.*, 1990, **31**, 2589.
- 2 B. Nicholls and M. C. Whiting, J. Chem. Soc., 1959, 551.
- 3 A. Maercker, Angew. Chem., Int. Ed. Engl., 1987, 26, 972.
- 4 F. Van Meurs, J. M. Van der Toorn and H. Van Bekkum, J. Organomet. Chem., 1976, 113, 341.
- 5 F. Rose-Munch, E. Rose and A. Semra, J. Chem. Soc., Chem. Commun., 1986, 1108.
- 6 J.-C. Boutonnet, F. Rose-Munch, E. Rose and A. Semra, Bull. Soc. Chim. Fr., 1987, 4, 640.