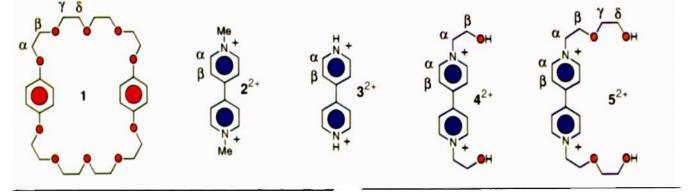
The Self-assembly of Complexes with [2]Pseudorotaxane Superstructures

Peter R. Ashton,[†]^a Douglas Philp,[†]^a Mark V. Reddington,^a Alexandra M. Z. Slawin,^b Neil Spencer,[†]^a J. Fraser Stoddart^{*}[†]^a and David J. Williams^b


^a Department of Chemistry, The University, Sheffield S3 7HF, UK
^b Department of Chemistry, Imperial College, London SW7 2AY, UK

The application of X-ray crystallography, mass spectrometry, and NMR and UV–VIS spectroscopy has revealed that bis-*p*-phenylene-34-crown-10 1 forms strong 1:1 complexes with the 4,4'-bipyridinium dication 3^{2+} and two of its derivatives, namely, the dications 4^{2+} and 5^{2+} in which the substituents on the bipyridine nitrogen atoms are, respectively, 2-hydroxyethyl and 2-(2-hydroxyethoxy)ethyl groups.

Previously, we have shown¹⁻⁷ that the important bipyridinium herbicide Paraquat (PQT) forms a 1:1 complex with bis-pphenylene-34-crown-10 (BPP34C10) 1. The strong binding of the PQT²⁺ dication 2^{2+} by 1 involves electrostatic and dispersive interactions, including charge transfer (CT), between the π -electron-deficient bipyridinium system in 2^{2+} and the π -electron-rich hydroquinol rings in 1. In addition, there is some further stabilisation of the 1:1 complex $[1\cdot 2]^{2+}$ by [C-H···O] hydrogen bonding between the acidic hydrogen atoms (Me and α -bipy-CH) in 2^{2+} . Anticipating the synthesis of [2]rotaxanes⁵⁻⁷ in which BPP34C10 1 is the macrocyclic component, threaded by chains incorporating bipyridinium units, we have prepared[‡] the bis(hexafluorophosphate) salts of the dications 3^{2+} , 4^{2+} and 5^{2+} where the Me groups in 2^{2+} are replaced by H, CH₂CH₂OH, and CH₂CH₂OCH₂CH₂OH substituents, respectively. Here, we report (a) the stability constants in acetone, (b) the ¹H NMR spectra in CD₃COCD₃, (c) the FABMS, and (d) the solid-state structures§ for the 1:1 complexes, $[1\cdot3][PF_6]_2$, $[1\cdot4][PF_6]_2$ and $[1\cdot5][PF_6]_2$.

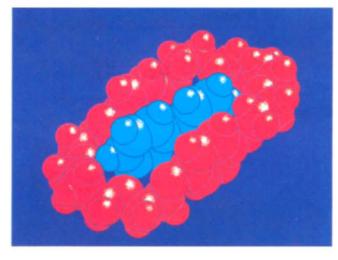
When BPP34C10 1 was mixed in turn with progressively more and more $3 \cdot 2PF_6$, $4 \cdot 2PF_6$ and $5 \cdot 2PF_6$ in acetone, deep orange coloured solutions resulted on account of the CT interactions. UV-VIS spectrophotometric titrations established that all the complexes formed have 1:1 stoichiometries and also afforded their associated stability constants (K_a). The K_a values and their derived free energies of complexation (ΔG°) are listed in Table 1. Whilst $3 \cdot 2PF_6$ forms a slightly weaker complex than $2 \cdot 2PF_6$ with BPP34C10 1, the strengths of $[1 \cdot 4][PF_6]_2$ and $[1 \cdot 5][PF_6]_2$ are very similar to that (730 dm³ mol⁻¹) of $[1 \cdot 2][PF_6]_2$ in acetone.⁷ Furthermore, there was evidence from FABMS (Table 2) for the existence of 1:1 complexes in all three cases. Clearly evident were peaks corresponding to the loss of one and two PF_6^- counterions, giving rise to signals with m/z values for $[M - PF_6]^+$ and $[M - 2PF_6]^+$ for all three complexes.

The solution-state structures of the 1:1 complexes were investigated by ¹H NMR spectroscopy in CD₃COCD₃ solutions. The results of these investigations are presented in

† Present address: School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

[‡] The bishydrochloride obtained (conc. HCl, EtOH) from 4,4'bipyridine was converted (NH₄PF₆, H₂O) into 3.2PF₆ [89%; m.p. 198-200 °C; m/z (positive-ion FABMS), 303 for [M - PF₆]+; δ (CD₃COCD₃, 250 MHz) 8.82-8.87 (4H, m, β-bipy-CH) and 9.42-9.46 (4H, m, α-bipy-CH). The dichloride salt obtained in 38% yield, on addition of EtOH, after heating an aqueous suspension of 4,4'bipyridine under reflux for 6 h with 2-chloroethanol, was converted (\dot{NH}_4PF_6, H_2O) into $4 \cdot 2PF_6$ [m.p. $215-220 \,^{\circ}C$; m/z (positive-ion FABMS), 391 for $[M - PF_6]^+$; δ (CD₃COCD₃, 250 MHz) 4.17-4.24 (4H, m, β-OCH₂), 4.68 (2H, t, J 5 Hz, OH), 5.05 (4H, t, J 5 Hz, α-NCH₂), 8.85 (4H, d, J 7 Hz, β-bipy-CH) and 9.39 (4H, d, J 7 Hz, α -bipy-CH). The dichloride salt, which was obtained after chromatography $[Al_2O_3: Pr^iOH-H_2O(4:1, v/v)]$ of the residue remaining after removal of the solvents following treatment of 4,4'-bipyridine in 2-methoxyethanol under reflux for 24 h with 2-(2-chloroethoxy)ethanol, was converted (NH₄PF₆, H₂O) into 5.2PF₆ [m.p. 240 °C (decomp); m/z (positive-ion FABMS), 479 for $[M - PF_6]^+$; δ (CD₃COCD₃, 250 MHz) 3.61 (8H, br.s, γ-OCH₂ and δ-OCH₂), 3.73 (2H, br.s, OH), 4.16 (4H, t, J 5 Hz, β -OCH₂), 5.13 (4H, t, J 5 Hz, α-NCH₂), 8.83 (4H, d, J 7 Hz, β-bipy-CH) and 9.43 (4H, d, J 7 Hz, α-bipy-CH).

§ Crystal data for 1·3·2PF₆: C₃₈H₅₀F₁₂N₂O₁₀P₂, M = 984.8, triclinic, space group *P*I, a = 9.123(2), b = 10.439(3), c = 12.209(3) Å, $\alpha =$


91.56(2), $\beta = 106.00(2)$, $\gamma = 98.47(2)^{\circ}$, U = 1103 Å³, Z = 1 (the complex is disposed about a centre of symmetry), $D_c = 1.48$ g cm⁻³, $\mu = 19$ cm⁻¹.

Crystal data for 1·4·2PF₆·Me₂CO: C₄₅H₆₄F₁₂N₂O₁₃P₂, M = 1130.9, monoclinic, space group *I2/c* (body-centred cell chosen because C-face-centred cell had $\beta = 139^{\circ}$), a = 18.723(4), b = 11.827(2), c = 24.880(7) Å, $\beta = 101.61(2)^{\circ}$, U = 5397 Å³, Z = 4 (the complex is disposed about a centre of symmetry and the Me₂CO molecule about a two-fold axis), $D_c = 1.39$ g cm⁻³, $\mu = 16$ cm⁻¹.

Crystal data for 1.5.2PF₆: C₄₆H₆₆F₁₂N₂O₁₄P₂, M = 1161.0, triclinic, space group $P\overline{1}$, a = 10.677(2), b = 10.973(2), c = 12.489(2) Å, $\alpha = 97.95(1)$, $\beta = 95.30(1)$, $\gamma = 104.99(1)^\circ$, U = 1387 Å³, Z = 1 (the molecule is disposed about a centre of symmetry), $D_c = 1.39$ g cm⁻³, $\mu = 16$ cm⁻¹.

Data for all three structures were measured on a Nicolet R3m diffractometer with graphite monochromated Cu-K α radiation using ω -scans. The structures were solved by direct methods and refined anisotropically to give (a) for 1·3·2PF₆, R = 0.055, $R_w = 0.070$, for 2588 independent observed reflections [$|F_o| > 3\sigma(|F_o|)$, $2 \le 110^\circ$], (b) for 1·4·2PF₆·Me₂CO, R = 0.077, $R_w = 0.097$ for 2435 independent observed reflections [$|F_o| > 3\sigma(|F_o|)$, $2\theta \le 100^\circ$], and (c) for 1·5·2PF₆, R = 0.094, $R_w = 0.116$ for 2487 independent observed reflections [$|F_o| > 3\sigma(|F_o|)$, $2\theta \le 100^\circ$].

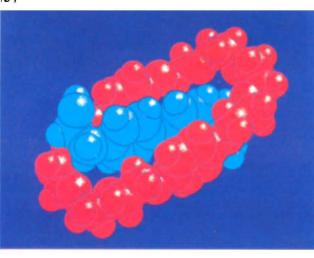
Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1. (8)

Table 1 The stability constants $(K_a/dm^3 mol^{-1})$ and the derived free energies of complexation $(\Delta G^{\circ}/kcal mol^{-1}; 1 cal = 4.184 J)$ for the 1:1 complex formed between BPP34C10 1 and 2·2PF₆, 3·2PF₆, 4·2PF₆ and 5·2PF₆ in Me₂CO at 27 °C

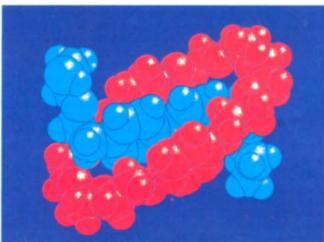
Complex	$\lambda_{max}^{a/nm}$	Ka	ΔG°		
$[1.2][PF_6]_{2^b}$	436	730	3.95		
$[1.3][PF_6]_2$	434	390	3.56		
$[1.4][PF_6]_2$	437	700	3.93		
$[1.5][PF_6]_2$	438	810	3.99		

^{*a*} The wavelengths at which the spectrophotometric titrations were performed. ^{*b*} Ref. 7.

Table 2 FABMS^a of [1·3][PF₆]₂, [1·4][PF₆]₂ and [1·5][PF₆]₂


Complex	M ^b	$[M - PF_6]^+ [M - 2PF_6]^+$		
[1·3][PF ₆] ₂	984	839	694	
$[1.4][PF_6]_2$	1072	927	782	
$[1.5][PF_6]_2$	1160	1015	870	

^a FABMS was carried out on a Kratos MS80RF mass spectrometer (accelerating voltage, 3 kV; resolution, 1500) coupled to a DS90 data system. The atom gun was an adapted saddle field source (Ion Tech Ltd.) operated at *ca*. 7 keV with a tube current of *ca*. 2 mA. Xenon was used to provide a primary beam of atoms and samples of $3 \cdot 2PF_6$, $4 \cdot 2PF_6$ and $5 \cdot 2PF_6$ and their 1:1 complexes with BPP34C10 1 were dissolved in a small volume of 3-nitrobenzyl alcohol, which had previously been coated on to a stainless steel probe tip. Spectra were recorded in the positive-ion mode at a scan speed of 30 s per decade. ^b This value is the calculated mass of the complex with all counterions. These peaks are not observed.


Table 3 in the form of chemical shift changes ($\Delta\delta$) that compare δ values for probe protons in both host and guests in complexed and uncomplexed forms. Inspection of the $\Delta\delta$ values shows qualitatively that the 1:1 complex $[1\cdot3]^{2+}$ is quite different supramolecularly from the 1:1 complexes $[1\cdot 2]^{2+}$, $[1\cdot4]^{2+}$ and $[1\cdot5]^{2+}$. Since $[1\cdot2]^{2+}$ is pseudorotaxane-like in character, we conclude that [1.4]2+ and [1.5]2+ adopt very similar superstructures in solution. However, in the case of $[1\cdot3]^{2+}$, it is not unreasonable to suggest that the N+...N+ vector of the dication 3^{2+} lies within the mean plane of the macrocycle 1. In this particular supramolecular arrangement $[N^+-H\cdots O]$ hydrogen bonding can be achieved: it also affords deeper inclusion of the bipyridinium unit within the cavity of 1 and hence maximises overlap between the π -systems of the host and guest. This deeper inclusion of the guest within the host cavity would also account for the much greater shielding effect experienced in the 1:1 complex by the α -bipy-CH and β -bipy-CH protons in the dication 3^{2+} as well as the vastly different chemical shift pattern observed for the resonances of the BPP34C10 protons. These conclusions regarding the geometries of the solution-state superstructures are supported by the solid-state geometries found for these 1:1 complexes (vide infra).

Vapour diffusion of diisopropyl ether into acetone solutions of $[1\cdot3][PF_6]_2$, $[1\cdot4][PF_6]_2$ and $[1\cdot5][PF_6]_2$ afforded single crystals of their 1:1 complexes that were suitable for X-ray crystallography. In all three cases, the dications 3^{2+} , 4^{2+} and 5^{2+} are threaded in a centrosymmetric fashion (Figs. 1 and 2) through the middle of the BPP34C10 1 macrocycle. In both $[1\cdot4][PF_6]_2$ and $[1\cdot5][PF_6]_2$, the macrocycles adopt essentially identical conformations with the aromatic OCH₂ groups oriented syn with respect to each other. The tilts of the N+...N⁺ vectors of the bipyridinium units relative to the O...O vectors of the hydroquinol rings are *ca*. 26°. This is in marked contrast to the supramolecular structure observed for $[1\cdot3][PF_6]_2$ where (a) the aromatic OCH₂ groups display an *anti* geometry with a consequent distortion of the conforma-

(D)

(C)

Fig. 1 Space-filling representations of (a) $[1\cdot3]^{2+}$, (b) $[1\cdot4]^{2+}$ and (c) $[1\cdot5]^{2+}$ in their solid states. The BPP34C10 1 macrocycles are shaded red and the dications 3^{2+} , 4^{2+} and 5^{2+} are light blue.

Complex	Bipy-CH		N ⁺ -substituent CH ₂			BPP34C101 protons					
	α	β	α	β	γ	δ	ArH	α	β	γ	δ
[1·3][PF ₆] ₂	-0.34	-0.73					-0.39	+0.06	+0.03	+0.10	+0.10
[1·4][PF ₆] ₂ [1·5][PF ₆] ₂	-0.15 -0.19	-0.32 -0.40	$^{+0.03}_{-0.00}$	+0.05 +0.06	+0.14	+0.14	-0.31 -0.33	$-0.19 \\ -0.18$	$-0.01 \\ -0.03$	+0.10 +0.14	+0.10 +0.14

Table 3 ¹H NMR chemical shift changes^{*a*} ($\Delta\delta$) for the complexes [1·3][PF₆]₂, [1·4][PF₆]₂ and [1·5][PF₆]₂

^{*a*} ¹H NMR spectra were recorded at 250 MHz in CD₃COCD₃ using a Bruker AM250 spectrometer. $\Delta \delta = \delta$ (complex) – δ (free).

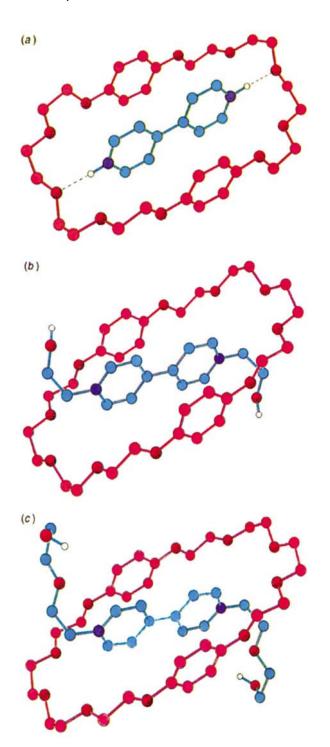


Fig. 2 Ball and stick representations of (a) $[1\cdot3]^{2+}$, (b) $[1\cdot4]^{2+}$ and (c) $[1\cdot5]^{2+}$ in their solid states. The BPP34C10 1 macrocycles are shaded red with the O atoms hatched dark red and the dications 3^{2+} , 4^{2+} and 5^{2+} are shaded blue with N atoms dark blue, O atoms hatched dark red, and NH and OH hydrogen atoms open circles.

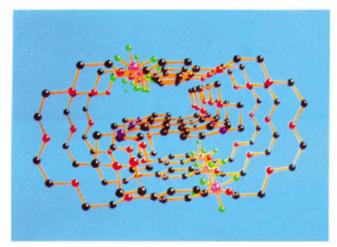


Fig. 3 A view looking down part of one of the infinite channels of BPP34C10 1 with 5^{2+} dications threaded down through its centre. The PF₆⁻ counterions lie within the periphery of the channel. C Atoms are black, O atoms are red, N atoms are blue, P atoms are violet, and F atoms are green.

tions of the polyether chains and (b) the $N^+ \cdots N^+$ vector of the bipyridinium unit aligns itself almost parallel with respect to the O…O vectors of the hydroquinol rings. This arrangement allows the formation of two strong and nearly linear [N+-H···O] hydrogen bonds (2.83 Å) to the central oxygen atoms of each polyether linkage. The bipyridinium dication 3^{2+} is thus almost totally encapsulated [Fig. 1(a)] within the BPP34C10 1 receptor site. This host-guest relationship contrasts with the pseudorotaxane-like character of $[1\cdot4][PF_6]_2$ [Fig. 1(b)] and $[1\cdot5][PF_6]_2$ [Fig. 1(c)]. In all three 1:1 complexes, the separations between the mean planes of the π -electron-rich hydroquinol rings and the π -electrondeficient bipyridinium units are ca. 3.5 Å. Both $[1\cdot3][PF_6]_2$ and $[1.5][PF_6]_2$ form continuous stacked arrangements of the BPP34C10 1 macrocycles, creating infinitely long channels (Fig. 3) in the crystallographic b directions, though, in $[1\cdot3][PF_6]_2$, the counterions block the free passage through the stack.

The fact that 4^{2+} and 5^{2+} form stable 1:1 complexes in which the dications are threaded through the centre of the macrocyclic cavity of 1 in a pseudorotaxane-like manner in both solution and solid states anticipates⁸ the next development—*i.e.* the synthesis of rotaxanes¶ and molecular shuttles⁹

¶ After our research in this area had been completed, it came to our attention that the complex $[1\cdot4][PF_6]_2$ has also been isolated and characterised using X-ray crystallography by H. W. Gibson *et al.* at the Virginia Polytechnic Institute and State University. This group have also described the synthesis of a family of viologen-containing polyurethane rotaxanes from bis(*p*-isocyanatophenyl)methane, *N*,*N*'-bis(2-hydroxyethyl)-4-4'bipyridinium bis(hexafluorophosphate) $4\cdot2PF_6$, and bis-*p*-phenylene-34-crown-10 1, as well as some polyrotaxane model studies. See Y. X. Shen, P. T. Engen, H. W. Gibson and J. S. Merola, *Abstracts 201 Am. Chem. Soc. National Meeting, Atlanta*, 14–19 April 1991, ORGN 325: H. W. Gibson, P. T. Engen, Y. X. Shen, J. Sze, C. Lim, M. Bheda and C. Wu, *Am. Chem. Soc. Div. Polym. Chem. Polym. Preprints*, 1991, **32**(1), 423; *Makromol. Chem.*, in the press.

based on dumbell components incorporating bipyridinium units and the macrocyclic component, BPP34C10 1—in our synthetic strategy involving self-assembly processes.¹⁰

We thank SERC in the UK and NEDO in Japan for financial support.

Received, 26th July 1991; Com. 1/03876A

References

- 1 B. L. Allwood, N. Spencer, H. Shariari-Zavareh, J. F. Stoddart and D. J. Williams, J. Chem. Soc., Chem. Commun., 1987, 1064.
- 2 P. R. Ashton, A. M. Z. Slawin, N. Spencer, J. F. Stoddart and
- D. J. Williams, J. Chem. Soc., Chem. Commun., 1987, 1066.
 J. F. Stoddart, Pure Appl. Chem., 1988, 60, 467.

- 4 M. V. Reddington, N. Spencer and J. F. Stoddart in *Inclusion Phenomena and Molecular Recognition*, ed. J. L. Atwood, Plenum Press, New York, 1990, p. 41.
- 5 J. F. Stoddart in *Host-Guest Molecular Interactions: From Chemistry to Biology*, Ciba Foundation Symposium 158, Wiley, Chichester, 1991, p. 5.
- 6 J. F. Stoddart, Chem. Br., 1991, 27, 714.
- 7 P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. Gondolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J F. Stoddart, C. Vicent and D. J. Williams, J. Am. Chem. Soc., in the press.
- 8 D. Philp and J. F. Stoddart, unpublished work.
- 9 P. L. Anelli, N. Spencer and J. F. Stoddart, J. Am. Chem. Soc., 1991, 113, 5131.
- 10 D. Philp and J. F. Stoddart, Synlett, 1991, 445.