$[NPr^{n}_{4}]_{2}[(ReS_{4})Cu_{5}I_{6}]$ and $[NEt_{4}]_{2}[(ReS_{4})Cu_{3}I_{4}]$: Novel Low Dimensional Solids

A. Müller,* E. Krickemeyer, A. Hildebrand, H. Bögge, K. Schneider and M. Lemke

Fakultät für Chemie der Universität, Postfach 8640, W-4800 Bielefeld, Germany

The compounds $[NPr^{n}_{4}]_{2}[(ReS_{4})Cu_{5}I_{6}]$ 1 and $[NEt_{4}]_{2}[(ReS_{4})Cu_{3}I_{4}]$ 2, containing polymeric heterometallic chains and interesting structural features according to X-ray structure analyses, have been obtained by reaction of CuI with $[NPr^{n}_{4}][ReS(S_{4})_{2}]$ in dichloromethane 1 or $[NEt_{4}][ReS_{4}]$ 2 in acetone; complexes 1 and 2 are examples of a series of compounds which prove the possibility of a stepwise 'capping' of the edges of an ReS₄ tetrahedron by a Cu(hal/pseudohal)_x fragment (x = 1,2).

It is still a challenge to prepare polymeric species or low-dimensional solids containing different metals. One elegant method is the use of thiometallates as educts. The number of species of this type is still small¹ and only one is known for the $[ReS_4]^-$ anion.² Black crystals of $[NPr^{n}_{4}]_{2}[(ReS_{4})Cu_{5}I_{6}]$ 1 were obtained in 50% yield by stirring $[NPr^{n}_{4}][ReS(S_{4})_{2}]$ (which decomposes to $[ReS_{4}]^{-}$), $[NPr^{n}_{4}]$ I and CuI in dichloromethane (2.5 h; under argon atmosphere) and leaving the filtered solution in a flask covered with a watch glass for 3–5 days. Refluxing (2.5 h) a

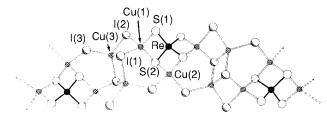


Fig. 1 Structure of the polymeric chain in $[NPr^{n}_{4}]_{2}[(ReS_{4})Cu_{5}I_{6}]$ 1. Interatomic distances (Å): Re…Cu 2.674(1), 2.678(2), Re–S(1) 2.148(4), Re–S(2) 2.205(2), Cu–S 2.273(3)–2.283(4), Cu(3)–I(1) 2.854(1), (others:) Cu– μ_{3} -I 2.659(2), 2.662(2), Cu– μ_{2} -I 2.592(3)–2.647(1); bond angles (°): S–Re–S 109.2(1)–109.6(2), I–Cu–I in four-membered rings 92.7(1)–103.3(1), other I–Cu–I 103.0(1)–126.8(1), I–Cu–S 107.9(1)–120.9(1), S–Cu–S 102.7(2)–104.2(1), Cu–I–Cu 95.8(1), 109.1(1), Re–S–Cu 73.1(1)–74.5(1), Cu–S–Cu 110.8(1).

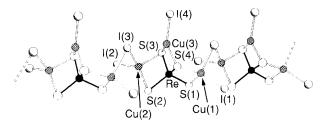
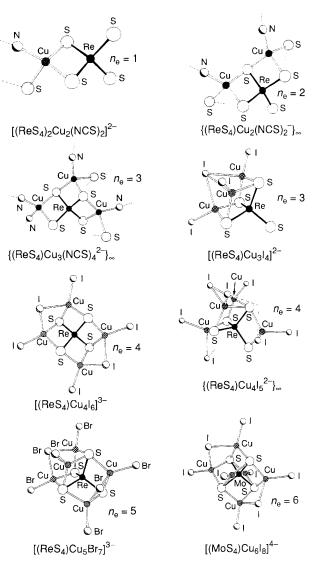


Fig. 2 Structure of the polymeric chain in $[NEt_4]_2[(ReS_4)Cu_3I_4]$ 2. Interatomic distances (Å): Re…Cu 2.614(4)–2.685(4), Re– μ_2 -S 2.158(6), 2.170(7), Re– μ_3 -S 2.216(5), 2.224(6), Cu– I_{term} 2.452(4)–2.532(4), Cu– μ_2 -I 2.721(4), 2.862(4), Cu(1)–S, Cu(2)–S 2.276(7)–2.316(7), Cu(3)–S 2.253(6), 2.259(6); bond angles (°): S–Re–S 106.9(2)–111.5(2), I–Cu–I 106.9(1), 108.1(1), I–Cu(1)–S, I–Cu(2)–S 100.6(2)–122.6(2), I–Cu(3)–S 123.6(2), 126.0(2), S–Cu–S 101.7(2)–107.0(2), Cu–I–Cu 89.8(1), Re–S–Cu 71.4(2)–73.8(2), Cu–S–Cu 93.6(2), 103.4(3).


mixture of $[NEt_4]I$ and CuI in acetone and stirring of the filtered mixture with $[NEt_4][ReS_4]^3$ (15 min) leads to the formation of black crystals of $[NEt_4]_2[(ReS_4)Cu_3I_4] 2$ in 67% yield after leaving the filtered solution in a flask covered with a watch glass for 8–10 days.

Complexes 1 and 2 have been characterized by elemental analysis, IR spectroscopy[†] and complete X-ray structure analysis.[‡] The structures of the polymeric anions in 1 and 2 are shown in Figs. 1 and 2. The most important bond lengths and angles characterizing the geometry of the building blocks, for instance the constitutional tetrahedra, are given in the legends. The IR data[†] allow Re- μ_2 -S and Re- μ_3 -S units to be distinguished easily.⁴

The anion in 1 can formally be described as an infinite double chain, composed of (strongly) distorted CuI₄ tetra-

For 2: C₁₆H₄₀Cu₃I₄N₂ReS₄, M = 1273.2, monoclinic, space group Cc; a = 7.220(4), b = 24.167(22), c = 19.045(14) Å, $\beta = 97.25(5)^{\circ}$, U = 3297(4) Å³, Z = 4; $D_c = 2.565$ g cm⁻³; $\mu = 9.591$ mm⁻¹. Data were collected using a Siemens R3m/V diffractometer

Data were collected using a Siemens R3m/V diffractometer (Mo-K α radiation, graphite monochromator). The structures were solved by direct methods. Full-matrix least-squares refinement converged at *R* values of 0.044 for 4164 unique reflexions [$F_o > 4.0\sigma(F_o)$] for 1 and 0.055 for 3810 unique reflexions [$F_o > 4.0\sigma(F_o)$] for 2. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 3 Central basic structures demonstrating the stepwise 'capping' of the edges of an ReS₄ tetrahedron (n_e = number of capped edges) as found in the following compounds with their characteristic structural features of the anions mentioned in brackets: [PPh₄]₂[(ReS₄)₂Cu₂(NCS)₂]⁷ {eight-membered Cu(NCS)₂Cu ring system and two terminal [ReS₄]⁻ ligands}; [PPh₄][(ReS₄)Cu₂(NCS)₂]⁷ (polymeric chain containing twelve-amembered ring systems); [NEt₄]₂[(ReS₄)-Cu₃(NCS)₄]⁷ (polymeric chain containing twelve- and sixteen-membered ring systems); (cat)₂[(ReS₄)Cu₃X₄]^{3,8} {cubane-type structure; cat = NPrⁿ₄, X = Cl; cat = [PPh₄], X = 1}; [NEt₄]₃[(ReS₄)-Cu₄X₆]·*n*CH₂Cl₂⁹ (boat structure; X = Br, *n* = 0.5; X = 1, *n* = 1); [PPh₄]₂[(ReS₄)Cu₄I₅]·MeCN² (polymeric chain containing cubane-type units); [PPh₄]₂[[(ReS₄)Cu₅X₇]^{3,10} (distorted double-cubane structure; X = Cl, Br); [PPh₄]₄[(MoS₄)Cu₆I₈]·4Me₂CO {unpublished, given only for completeness as no corresponding Re compound with $n_e = 6$ is known; see also the structure of the compound [(VS₄)Cu₆(PPh₃)₅Cl₃]·CH₂Cl₂¹¹}.

hedra sharing edges or corners, whereby every sixth CuI₄ tetrahedron is replaced by a rather regular ReS₄ tetrahedron alternately in the upper and lower strand of the double chain. On the other hand in the compounds (cat)Cu₂I₃ (cat = Cs, Rb, NC₆H₈, SMe₃),⁵ which also contain double chains, the CuI₄ tetrahedra only share edges. In **1** the 'capping' of three edges ($n_e = 3$) of the ReS₄ tetrahedron occurs by CuI₂ fragments.

The same value n_e is found in the polymeric anion of 2, where the 'capping' of three edges of the ReS₄ tetrahedron by

⁺ Selected IR data (Nujol mull) in cm⁻¹ for 1: $v[Re-(\mu_2-S)]$ 480s; $v[Re-(\mu_3-S)]$ 445sh, 438m; 2: $v[Re-(\mu_2-S)]$ 484m, 470m; $v[Re-(\mu_3-S)]$ 447sh, 439m.

[‡] Crystal data for 1: C₂₄H₅₆Cu₅I₆N₂ReS₄, M = 1766.2, monoclinic, space group C2/c; a = 27.178(5), b = 13.477(2), c = 19.225(3) Å, $\beta = 139.44(1)^\circ$, U = 4578.8(13) Å³, Z = 4; $D_c = 2.562$ g cm⁻³; $\mu = 9.161$ mm⁻¹.

different CuI_x fragments (x = 1, 2) generates formally {(ReS₄)Cu₃I₄} units, which are connected *via* Cu–I bonds thereby forming heterometallic chains. These can also be described as rather regular ReS₄ (A) and distorted CuI₂S₂ tetrahedra (B) connected in the following way: ...ABBABBA.... The ReS₄ and CuI₂S₂ tetrahedra share edges, whereas the latter are connected by corner sharing. This also corresponds to the bridging of ReS₄ units by chain type I_{term}CuICuI_{term} fragments *via* the two Cu atoms. {In the interesting compound [PPh₄]₂[(MoS₄)Cu₄Br₄]·Me₂CO^{1c} the [MoS₄]^{2–} anions are bridged by Cu(μ_2 -Br)₂Cu units.} In this description one further edge of the ReS₄ tetrahedron in **2** is 'capped' by a CuI unit giving rise to a Cu atom in a trigonal environment.

Complexes 1 and 2 are examples of a series of compounds which prove the possibility of a stepwise 'capping' of the edges of an ReS₄ tetrahedron by a Cu(hal/pseudohal)_x fragment (x = 1, 2). Using this method a variety of compounds containing the [ReS₄]⁻ ion with very different structures (including chain type ones) due to different n_e values (1–5) can be generated (Fig. 3). The corresponding chemistry is different from that of the MS₄²⁻ (M = Mo, W) ions.

The next challenge is to replace closed shell metal centres like Cu^+ by open shell ones (like Fe^{n+}),⁶ and that means varying the (important) exchange coupling.

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support and the Degussa AG for the donation of rhenium.

Received, 12th March 1991; Com. 1/01155C

References

- (a) A. Müller, M. Dartmann, C. Römer, W. Clegg and G. M. Sheldrick, Angew. Chem., 1981, 93, 1118; Angew. Chem., Int. Ed. Engl., 1981, 20, 1060; (b) A. Müller, W. Hellmann, J. Schneider, U. Schimanski, U. Demmer, A. Trautwein and U. Bender, Inorg. Chim. Acta, 1982, 65, L41; (c) J. R. Nicholson, A. C. Flood, C. D. Garner and W. Clegg, J. Chem. Soc., Chem. Commun., 1983, 1179; (d) J. M. Manoli, C. Potvin, F. Secheresse and S. Marzak, Inorg. Chim. Acta, 1988, 150, 257.
- 2 A. Müller, E. Krickemeyer and M. Penk, J. Chem. Soc., Chem. Commun., 1990, 321.
- 3 A. Müller, E. Krickemeyer and H. Bögge, Z. Anorg. Allg. Chem., 1987, **554**, 61.
- 4 A. Müller, W. Jaegermann and W. Hellmann, J. Mol. Struct., 1983, 100, 559.
- N. Jouini, L. Guen and M. Tournoux, *Rev. Chim. Miner.*, 1980, 17, 486; H. Hartl and F. Mahdjour-Hassan-Abadi, *Z. Natur-forsch.*, *Teil B*, 1984, 39, 149; M. Asplund, S. Jagner and M. Nilsson, *Acta Chem. Scand.*, *Ser. A*, 1985, 39, 447; K. P. Bigalke, A. Hans and H. Hartl, *Z. Anorg. Allg. Chem.*, 1988, 563, 96.
- 6 A. Müller, *Polyhedron*, 1986, 5, 323; A. Müller and E. Diemann in *Comprehensive Coordination Chemistry*, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, vol. II, ch. 16.3 (Metallothio Anions), Pergamon Press, Oxford, 1987.
- 7 A. Müller, A. Hildebrand, E. Krickemeyer, M. Ishaque Khan, M. Penk, H. Bögge and K. Schneider, *Inorg. Chem.*, to be submitted.
- 8 C. D. Scattergood, C. D. Garner and W. Clegg, *Inorg. Chim.* Acta, 1987, **132**, 161.
- 9 A. Müller, E. Krickemeyer, H. Bögge and M. Penk, Chimia, 1989, 43, 319.
- 10 A. Müller, E. Krickemeyer and H. Bögge, Angew. Chem., 1986, 98, 987; Angew. Chem., Int. Ed. Engl., 1986, 25, 990.
- 11 C. D. Scattergood, P. G. Bonney, J. M. Slater, C. D. Garner and W. Clegg, J. Chem. Soc., Chem. Commun., 1987, 1749.