141

Intrazeolite Metal Carbonyl Kinetics: ¹²CO Substitution in Mo(¹²CO)₆-Na₅₆Y by PMe₃ and ¹³CO

Geoffrey A. Ozin,* a Saim Özkar, b Heloise O. Pastore, a Anthony J. Poë* a and Eduardo J. S. Vichic

^a Lash Miller Chemical Laboratories, University of Toronto, 80 St George Street, Toronto, Ontario, Canada M5S 1A1 ^b Department of Chemistry, Middle East Technical University, Ankara, Turkey

^c Instituto de Química, Universidade Estadual de Campinas, Campinas, S. P., Brasil

The first kinetic study is reported for archetypical substitution reactions of PMe₃ and ¹³CO with the well defined intrazeolite system, $Mo({}^{12}CO)_6$ -Na₅₆Y, for which excellent isosbestic points and first order behaviour are obtained, the activation parameters indicate a highly ordered 'supramolecular' transition state consisting of activated $Mo({}^{12}CO)_6$ and PMe₃ or ¹³CO all anchored to the Na⁺ ions in the α -cage of the host lattice.

The anchoring of metal carbonyls and organometallic compounds to the accessible extraframework 'half-naked' cation sites in zeolite hosts is a ubiquitous phenomenon, with important implications in molecule separation, catalysis and materials science.¹ A range of powerful physical methods is now available to provide detailed structure-bonding information on a variety of intrazeolite guests² and a unique opportunity exists to probe reactivity patterns of 'supramolecular guest-host assemblies' through quantitative in situ kinetic studies of structurally well characterized 'model' intrazeolite systems. Activation parameters for archetypical intrazeolite metal carbonyl and organometallic transformations could be compared with known values for the same reactions in solution, gas and matrix phases. One could then begin to evaluate intracavity and intrachannel anchoring interactions, space filling constraints, and ordering and cooperative effects that endow the 'nanoreaction chambers' of

different zeolite hosts with the special character that they so often display when compared to other supports and other phases.

We present here the first quantitative kinetic results on a well defined intrazeolite metal carbonyl system, namely a phosphine-substitution and a ¹³CO exchange reaction of $n\{MO(CO)_6\}$ -Na₅₆Y, the key structural information for which is summarized in Fig. 1. Briefly, ²³Na, ¹³C and ³¹P MAS NMR,³ mid IR and far IR spectroscopy,⁴ EXAFS structure determinations,⁵ adsorption, and elemental analysis^{4,5} have shown saturation loading values in Na₅₆Y of 2Mo(CO)₆ per α -cage and 4PMe₃ per α -cage, and these correspond to unit cell formulations of 16{Mo(CO)₆}-Na₅₆Y and 32{PMe₃}-Na₅₆Y, respectively (Fig. 1*B*,*C*). Further, the half-saturation loaded 8{Mo(CO)₆}-Na₅₆Y system (Fig. 1*A*) can additionally adsorb up to an average of 2PMe₃ per α -cage to yield 8{Mo(CO)₆},16{PMe₃}-Na₅₆Y (Fig. 1*D*). The four site II Na⁺ ions are tetrahedrally organized in the supercage of Na₅₆Y⁴⁻⁶ and can trap a single Mo(CO)₆ molecule and two 2PMe₃ ligands in the arrangement sketched in Fig. 1*D*. The IR spectrum indicates that the Mo(CO)₆ is no longer strongly anchored to extraframework Na⁺ ions, a situation that is also apparent for n{Mo(CO)₆},m{¹³CO}-Na₅₆Y. Full details of our combined intrazeolite kinetics cell and Fourier transform mid IR detection system will be presented elsewhere.⁷ The key results of our first kinetic study in this important new field are reported below.

Hexacarbonylmolybdenum(0) in the 13 Å-diameter supercage void system of dehydrated sodium zeolite Y, $n\{Mo(CO)_6\}-Na_{56}Y$ (n < 8), undergoes ¹²CO substitution reactions in the presence of trimethylphosphine in $n\{Mo(CO)_6\},m\{PMe_3\}-Na_{56}Y$, or of isotopically labelled carbon monoxide in $n\{Mo(CO)_6\},m\{^{13}CO\}-Na_{56}Y\}$, to afford intrazeolite, *cis*- $\{Mo(^{12}CO)_4(PMe_3)_2\}-Na_{56}Y\}$, and fully labelled $\{Mo(^{13}CO)_6\}-Na_{56}Y\}$, respectively. No reaction intermediates were detected in the PMe_3 system, as suggested by the excellent isosbestic point in Fig. 2. Non-involvement of $Mo(^{12}CO)_5PMe_3$ was confirmed by direct impregnation of $Mo(^{12}CO)_5(PMe_3)$, and the demonstration that this reacts much more slowly than $Mo(CO)_6$.

These reactions proceed by very well behaved first order processes (Fig. 3*a*) that involve what we believe to be a supramolecular assembly of $Mo({}^{12}CO)_6$, PMe_3 or ${}^{13}CO$

Table 1 Activation parameters for dissociative reactions of Mo(CO)₆

Entering Ligand	Medium	$\Delta H^{\ddagger/}$ kJ mol $^{-1}$	ΔS^{\ddagger} /J K ⁻¹ mol ⁻¹
None ^a	Gas phase	157	38
$^{14}CO^{b}$	Gas phase	126.4	-1.7
PBu ⁿ 3 ^b	Decalin	132.5	28
PMe ₃	Na ₅₆ Y	69.5	-106.8
$^{13}CO^{c}$	Na ₅₆ Y	65.3	-126.8

^{*a*} Irreversible CO loss induced by pulsed laser pyrolysis technique at 670–760 K; ref. 8(*c*). ^{*b*} Ref. 8(*b*). ^{*c*} $P(^{13}CO) = 100$ Torr.

Fig. 1 Summary of structural data for (A) ${MO(CO)_6}-Na_{56}Y$, (B) $16{MO(CO)_6}-Na_{56}Y$, (C) $32{PMe_3}-Na_{56}Y$ and (D) ${MO(CO)_6},16{PMe_3}-Na_{56}Y$

ligands, and extraframework Na+ ions, all housed together in the supercage of Na₅₆Y as illustrated for 8{Mo(${}^{12}CO$)₆},16{PMe₃}-Na₅₆Y in Fig. 1*D*. The observed rate constants k_{obs} (PMe₃) and k_{obs} (${}^{13}CO$) lie between 8.31 × 10^{-5} and 1.19×10^{-3} s⁻¹, and 9.10×10^{-5} and 1.11×10^{-3} s⁻¹, respectively, in the temperature range 45–95 °C. Excellent Eyring plots (Fig. 3b) yield activation parameters shown in Table 1. The values of ΔH^{\ddagger} are between 60 and 90 kJ mol⁻¹ smaller than those found for similar types of reactions in the solution and gas phase,⁸ respectively (Table 1). This dramatic decrease, for what we describe as 'intracage' first-order dissociative ¹²CO substitution reactions, is believed to originate in much stronger cation anchoring of the {Mo(12CO)₅... (^{12}CO) [‡] transition state compared with that of the ground state Mo(12CO)₆. This also could account for the large negative values for ΔS^{\ddagger} since the much more weakly anchored Mo(12CO)₆ in the ground state is transformed by CO dissociation into the tightly anchored[†] Mo(¹²CO)₅ intermediate, this transformation being associated with increased back-bonding in the less highly coordinated intermediate, and the consequently greater negative charge on the oxygen atoms of the carbonyl ligands. The 'kinetic signature' provided by this study complements, supports and amplifies the 'spectroscopic-structure-bonding' picture for $n{Mo(12CO)_6}-Na_{56}Y$ derived from earlier studies.3-5

The closeness of the ΔH^{\ddagger} and ΔS^{\ddagger} values for the intrazeolite PMe₃ and ¹³CO reactions demonstrates the mechanistic similarities of the two processes. The observed rates are controlled by the dissociative loss of the first ¹²CO from

2201 2149 2097 2045 1993 1941 1889 1837 1785 1733 v/cm⁻¹

Fig. 2 Typical mid IR spectral changes observed for (a) n{Mo-(¹²CO)₆},m{PMe₃}-Na₅₆Y and (b) n{Mo(¹²CO)₆},m{¹³CO}-Na₅₆Y [P(¹³CO) = 100 Torr), T = 65.8 °C]

[†] A similar explanation involving a tightening up of the transition state has been offered for a negative $(-89 \text{ J K}^{-1} \text{ mol}^{-1})$ value of ΔS^{\ddagger} observed for a CO dissociative reaction of Ru₃(CO)₉(PBuⁿ₃)₃ in decalin (S. K. Malik and A. J. Poë, *Inorg. Chem.*, 1979, **18**, 1241).

$$\{Mo(CO)_6\}-NaOZ \xrightarrow{k_1}{\underset{k_{-1}}{\overset{2}{\leftarrow}}} ZONa\cdots(OC)Mo(CO)_3(CO)\cdots NaOZ + CO$$
(1)

$$ZONa...(OC)M_0(CO)_3(CO)...NaOZ \stackrel{k_2}{\leftarrow} ZONa...(OC)M_0(CO)_2(CO)...NaOZ + CO$$
(2)

- $ZONa\cdots(OC)Mo(CO)_2(CO)\cdots NaOZ + ZONa\cdots PMe_3 \rightarrow ZONa\cdots(OC)Mo(CO)_2(PMe_3)(CO)\cdots NaOZ$ (3)
- $ZONa \cdots (OC)Mo(CO)_2(PMe_3)(CO) \cdots NaOZ + ZONa \cdots PMe_3 \rightarrow ZONa \cdots (OC)Mo(CO)_2(PMe_3)_2(CO) \cdots NaOZ$ (4)
- $ZONa \cdots (OC)Mo(CO)_2(CO) \cdots NaOZ + 4 {}^{13}CO \rightleftharpoons \rightleftharpoons \rightleftharpoons \rightleftharpoons \lor ZONa \cdots (O^{13}C)Mo({}^{13}CO)_2({}^{13}CO) \cdots NaOZ + 4 {}^{12}CO$ (5)
 - $ZONa\cdots(O^{13}C)Mo(^{13}CO)_2(^{13}CO)\cdots NaOZ + ^{13}CO \rightarrow NaOZ\cdots(O^{13}C)Mo(^{13}CO)_3(^{13}CO)\cdots NaOZ$ (6)
 - $ZONa\cdots(O^{13}C)Mo(^{13}CO)_{3}(^{13}CO)\cdots NaOZ + ^{13}CO \rightarrow NaOZ\cdots(O^{13}C)Mo(^{13}CO)_{4}(^{13}CO)\cdots NaOZ$ (7)

Fig. 3 (a) First order plots for reactions with PMe₃, and (b) Eyring plots for reactions with PMe₃ and 13 CO [$P({}^{13}$ CO) = 100 Torr]

Mo(¹²CO)₆ although the energetics of this step can probably be modified by effects transmitted through the zeolite from the entering groups that are initially anchored to the accessible extraframework Na⁺ ions. In the case of PMe₃, the kinetic data are consistent with the sequence of reactions (1)–(4). In the absence of added CO, $k_2 > k_{-1}$ [CO] or k_1 and the rate determining step is simply the forward reaction in eqn. (1). When the entering ligand is ¹³CO, the kinetic data are consistent with a similar reaction sequence except that a series of rapid ¹²CO/¹³CO exchange reactions precede steps analogous to (3) and (4) according to the reactions shown in eqn. (5)–(7) to yield the major product $\{Mo(^{13}CO)_6\}$ -Na₅₆Y.

Extensive studies involving variation in $Mo({}^{12}CO)_6$ and PMe₃ loading, ${}^{12}CO$ and ${}^{13}CO$ pressure, the nature of monoand bi-dentate phosphine reactants, extraframework cations, Si/Al ratio, zeolite structure type, and temperature are under way.⁷ These results will allow us to assemble a comprehensive and quantitative mechanistic picture for these important archetypical intrazeolite metal carbonyl reactions.

The financial assistance of the Natural Sciences and Engineering Research Council of Canada (G. A. O., A. J. P.) is appreciated. S.O. is indebted to the Middle East Technical University, Ankara, for leave of absence and H. O. P. and E. J. S. V. acknowledge CNPq (Brasil) and FAPESP (Sao Paulo) for a graduate scholarship (H. O. P.) and financial support (E. J. S. V.).

Received, 28th August 1990; Com. 0/03886E

References

- G. A. Ozin and C. Gil, *Chem. Rev.*, 1989, **89**, 1749; G. A. Ozin and S. Özkar, *Acc. Chem. Res.*, submitted for publication; G. A. Ozin, A. Stein and A. Kuperman, *Angew. Chem.*, *Int. Ed. Engl. (Adv. Mat.)*, 1989, **101**, 373; G. D. Stucky and J. MacDougall, *Science*, 1990, **247**, 669, and references cited therein.
- 2 J. M. Thomas and D. E. W. Vaughan, J. Phys. Chem. Solids, 1989, 50, 449; J. M. Thomas, in Zeolites: Facts, Figures, Future, eds. P. A. Jacobs and R. A. van Santem, Elsevier, Amsterdam, 1989.
- 3 G. A. Ozin, S. Özkar and P. M. Macdonald, J. Phys. Chem., 1990, 94, 6939; G. A. Ozin and S. Özkar, J. Phys. Chem., 1990, 94, 7556.
- 4 G. A. Ozin, S. Özkar, T. Bein and K. Moller, J. Am. Chem. Soc., in the press.
- 5 S. Özkar, G. A. Ozin, T. Bein and K. Moller, J. Phys. Chem., submitted for publication; J. M. Coddington, R. F. Howe, Y. S. Yong, K. Asakura and Y. Iwasawa, J. Chem. Soc., Faraday Trans., 1990, 86, 1015, and references cited therein.
- 6 A. N. Fitch, H. Jobic and A. Renouprez, J. Phys. Chem., 1986, 90, 1311.
- 7 G. A. Ozin, S. Özkar, H. O. Pastore, A. J. Poë and E. J. S. Vichi, to be published.
- 8 (a) J. M. Morse, H. P. Gregory and T. J. Burkey, Organometallics, 1989, 8, 2471; (b) J. A. S. Howell and P. M. Burkinshaw, Chem. Rev., 1983, 83, 557; (c) K. E. Lewis, D. M. Golden and G. P. Smith, J. Am. Chem. Soc., 1984, 106, 3905, and references cited therein.

143