Unusual Alkylidene-bridged Complexes of Nickel by α -H Abstraction from a Nickelacycle. Crystal and Molecular Structure of [{ Ni_2 (CHCMe₂-o-C₆H₄)Cl(PMe₃)₂}₂]

Ernesto Carmona,* ^a Enrique Gutiérrez-Puebla, ^b Angeles Monge, ^b Margarita Paneque ^a and Manuel L. Poveda ^a ^a Departamento de Química Inorgánica-Instituto de Ciencia de Materiales, Universidad de Sevilla-CSIC, Apdo 553,

^b Instituto de Ciencia de Materiales, Sede D, CSIC, Serrano 113, 28006 Madrid, Spain, and Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain

The pseudoallylic complex [Ni(η^3 -CH₂C₆H₄-o-Me)Cl(PMe₃)] effects α -H abstraction from the metallacycle [Ni(CH₂CMe₂-o-C₆H₄)(PMe₃)₂] under very mild conditions, with formation of an alkylidene-bridged tetrametallic species of composition [{Ni₂(CHCMe₂-o-C₆H₄)Cl(PMe₃)₂]₂].

We have recently reported that the benzannelated nickelacycle [$Ni(CH_2CMe_2-o-C_6H_4)(PMe_3)_2$] 1 can be readily obtained¹ by δ -H abstraction from the unstable dialkyl [$Ni(CH_2CMe_2Ph)_2(PMe_3)_2$]. We now report that, under appropriate conditions, 1 can undergo an α -H abstraction which yields a compound of composition [$\{Ni_2(CHCMe_2-o-C_6H_4) Cl(PMe_3)_2\}_2$] 2 that contains one alkylidene bridging ligand²⁻⁵ per Ni₂ unit. This transformation provides the first reported example of α -elimination from a metallacycle to give an isolable alkylidene complex.⁶ Moreover, compound 2 is to our knowledge the first non-heteroatom-stabilized alkylidene complex of nickel. Mononuclear, heteroatom-stabilized alkylidene complexes of Ni are known^{2,7} but analogous homoand hetero-binuclear derivatives are rare.⁸ The formation of the transient Cp(L)Ni=CH₂+ (Cp = C₅H₅; L = P-donor ligand) has been postulated in some methylene transfer reactions⁹ and a methylene-bridged W–Ni complex has been characterized recently.¹⁰

Treatment of a yellow-orange solution of 1 with the pseudoallylic species¹¹ $[Ni(\eta^3-CH_2C_6H_4-o-Me)Cl(PMe_3)]$

yields dark-red, almost black crystals of **2**. Full spectroscopic data[†] for this compound are available, and its molecular structure has been determined by X-ray studies.[‡] The molecular complex **2** (Fig. 1) has a centre of symmetry which relates the two binuclear units that comprise the planar, six-membered Ni₄Cl₂ ring. The chlorine atoms bridge the non-bonded pairs of Ni atoms whereas the alkylidene and aryl ligands symmetrically bridge the two bonded pairs of Ni atoms. The Ni–Ni separation, within these binuclear units [2.384(3) Å], is close to the 2.32–2.36 Å range typical of Ni–Ni bonds in sterically favoured situations.¹² The existence of a single Ni–Ni bond^{13,14} can also be invoked to explain the observed diamagnetism of compound **2**.

The overall formation of **2** from the dialkyl [Ni(CH₂-CMe₂Ph)₂(PMe₃)₂] corresponds to a double H-abstraction, δ + α . In accord with the stoichiometry proposed in Scheme 1, the best yields of **2** (80% of isolated product) are obtained when the starting materials are mixed in a 1:2 molar ratio. Therefore, in addition to capturing the leaving PMe₃ ligand, the pseudoallyl complex acts as an H-acceptor (yielding *o*-dimethylbenzene, GC–MS) and provides a suitable metal fragment, allowing the formation of the observed dimetallacyclopropane structure.^{5a,15} This synthetic methodology can be successfully applied to the preparation of other related alkylidene complexes of nickel. Thus, treatment of the metallacycle **1** with the 18 e complex [(η^5 -C₅H₅)Ni(η^3 -C₃H₅)] provides good yields of the binuclear, alkylidene-bridged

Complex 3: ¹H NMR (C₆D₆) δ 0.74 (d, ²J_{HP} 5.9 Hz, 9H, PMe₃), 0.83 (d, ²J_{HP} 7.3 Hz, 9H, PMe₃), 1.49, 1.65 (s, 3H and 3H, CMe₂), 5.5 (s, 5H, C₅H₅) and 7.02 (dd, ³J_{HP} 6.6 and 2.3 Hz, 1H, Ni₂CH); ³¹P{¹H} NMR (C₆D₆), δ -23.9 (d, ²J_{PP} 32 Hz) and -17.7 (d); ¹³C{¹H} NMR (C₆D₆) δ 16.9 (d, ¹J_{CP} 19.1 Hz, PMe₃), 18.7 (dd, ¹J_{CP} 22 Hz, ³J_{CP} 5 Hz, PMe₃), 30.4 (dd, ⁴J_{CP} 8 and 3 Hz, *CMe*), 36.9 (d, ⁴J_{CP} 9 Hz, *CMe*), 59.8 (s, *CM*e₂), 90.2 (s, C₅H₅) and 161.4 (d, ²J_{CP} 43 Hz, Ni₂CH).

Complex 5: ¹H NMR (CD₃COCD₃) δ 1.24 (d, ²J_{HP} 7.8 Hz, ⁹H, Ni-PMe₃), 1.47 (d, ²J_{HP} 13.1 Hz, ⁹H, CHP*Me*₃) and 1.99 (dd, *J*_{HP} 6.2 and 5.3 Hz, ¹H, CHPMe₃); ³¹P{¹H} NMR (CD₃COCD₃) δ -12.7 (d, *J*_{AX} 10.1 Hz, Ni-P_A) and 21.8 (d, CHP_X); ¹³C{¹H} NMR (CD₃COCD₃) δ 14.5 (d, ¹J_{CP} 54 Hz, CHP*Me*₃), 14.9 (d, ¹J_{CP} 22 Hz, Ni-PMe₃) and 43.3 (dd, ²J_{CP} 68 Hz, ¹J_{CP} 27 Hz, CHPMe₃). Complex 6: ¹H NMR (CD₂Cl₂) δ 4.61 (tt, ³J_{HP} 14.4 and 1.5 Hz, ¹H,

Complex 6: ¹H NMR (CD₂Cl₂) δ 4.61 (tt, ³J_{HP} 14.4 and 1.5 Hz, 1H, Ni₂CH); ³¹P{¹H} NMR (CD₂Cl₂) δ 20.6 (d, J_{AX} 7.4 Hz, P_A) and 35.0 (d, P_X); ¹³C{¹H} NMR (CD₂Cl₂) δ 126.9 (t, ²J_{CP} 8 Hz, Ni₂CH).

 $\ddagger Crystal data$ for 2: C₃₂H₅₈Cl₂Ni₄P₄, $M_r = 872.44$, monoclinic, space group P_{2_1}/n , a = 9.815(4), b = 10.550(4), c = 19.669(7) Å, β = 104.39(3)°, V = 1973(1) Å³, Z = 4, $D_c = 1.47$ g cm⁻³, F(000) = 912, μ (Mo-K α) = 22.08 cm⁻¹. The crystals were dark red, prismatic and polysynthetically twinned on (100) with b and c in common. One of these crystals ($0.4 \times 0.2 \times 0.2$ mm) was coated with epoxy resin and mounted in a Kappa diffractometer. The cell dimensions were refined by least squares fitting the values of 25 reflections. The intensities [4356 collected; 1767 'observed,' with $l > 2\sigma(l)$] were corrected for Lorentz and polarization effects. Scattering factors for neutral atoms and anomalous dispersion correction for Ni, Cl and P were taken from the International Tables. The structure was solved by Patterson and Fourier methods. An empirical absorption correction was applied at the end of the isotropic refinement. The refinement involved anisotropic thermal parameters for the non-hydrogen atoms with the exception of the PMe3 carbon atoms, which showed a non-resolved disorder and were refined isotropically. The hydrogen atoms were included with fixed contributions at their calculated positions. Final R 8.8%; $R_w = 10.0\%$. The maximum residual electronic density was 2 e Å⁻³ around the methyl groups. Most of the calculations were carried out with the X-Ray 80 system.¹⁹ Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 1 ORTEP diagram for 2 and schematic representation A, with atom labelling scheme. Only half of the molecule is represented for clarity and all methyl groups and H atoms have been omitted. Important bond distances (Å) and angles (°): Ni(1)–Ni(2) 2.384(3), Ni(1)–C(1) 1.91(2), Ni(1)–C(2) 2.306(6), Ni(1)–P(1) 2.180(6), Ni(1)–C(6) 2.04(2); C(1)–Ni(1)–C(6) 75.8(8), Ni(1)–C(1)–Ni(2) 77.6(7), Ni(1)–C(6)–Ni(2) 71.2(7), P(1)–Ni(1)–C(1) 94.7(6), C(1)–Ni(2)–P(2) 95.8(6).

Scheme 2 C₆H₆, 40 °C, -C₃H₆

complex **3** (Scheme 2), which has been fully characterized by spectroscopic† and X-ray studies (to be reported separately).

The dimeric nature of the tetrametallic complex 2 suggests that related binuclear alkylidene compounds could be isolated by rupture of the chloride bridges (Scheme 3). Treatment of 2 with 1 equiv. of PMe₃ produces the rather unstable complex 4 while in the presence of an excess of PMe₃, [Ni(PMe₃)₄] and the ylide^{†16} complex 5 are obtained. This transformation is highly reminiscent of the reported reaction of PMe₃ with the heteronuclear μ -methylene complex [Cp₂Ta(CH₃)(μ -CH₂)-Pt(PMe₃)₂], which gives¹⁷ [Pt(PMe₃)₄] and the terminal methylene compound [Cp₂Ta(CH₂)CH₃], and may proceed *via* formation of an unstable mononuclear alkylidene species, [Ni(CHCMe₂-o-C₆H₄)Cl(PMe₃)], followed by nucleophilic

[†] Selected spectroscopic data for **2**: ¹H NMR (CD₃CN) δ 1.35 (d, ²J_{HP} 8.3 Hz, 18H, 2 PMe₃), 1.41 (s, 6H, 2 Me) and 3.45 (t, ³J_{HP} 14.3 Hz, 1H, Ni₂CH); ³¹P{¹H} NMR (CD₃CN) δ -9.2 s; ¹³C{¹H} NMR (CD₃CN) δ 15.1 (d, ¹J_{CP} 26 Hz, PMe₃), 34.9 (s, *CMe*₂), 57.2 (s, *CMe*₂) and 120.2 (br s, Ni₂CH). Satisfactory elemental analyses were obtained for C₃₂H₅₈Cl₂P₄Ni₄·1/3C₆H₆.

150

Scheme 3 Reagents: i, dmpe; ii, Na(C₅H₅); iii, PMe₃ (1 equiv.); iv, PMe₃ (excess)

attack of a PMe₃ ligand at the carbene carbon. On the other hand, action of the chelating phosphine $Me_2PCH_2CH_2PMe_2$ (dmpe) on **2** (Scheme 3) affords[†] the cationic, symmetrically bridged, alkylidene complex **6**.¹⁸ Finally, the reaction of **2** with NaCp provides an alternative synthesis of **3**.

Generous support by the Dirección General de Investigación Científica y Técnica (Grant nos. PB860653 and PB020101) is gratefully acknowledged. We thank Mr. T. R. Belderrain and Miss M. C. Nicasio for experimental assistance.

Received, 7th August 1990; Com. 0/03636F

References

- 1 E. Carmona, E. Gutiérrez-Puebla, J. M. Marín, A. Monge, M. Paneque, M. L. Poveda and C. Ruiz, J. Am. Chem. Soc., 1989, 111, 2883.
- W. A. Herrmann, Adv. Organomet. Chem., 1982, 20, 159; M. A. Gallop and W. R. Roper, Adv. Organomet. Chem., 1986, 25, 121;
 J. E. Hahn, Prog. Inorg. Chem., 1984, 31, 205; K. H. Dötz, Angew. Chem., Int. Ed. Engl., 1984, 23, 587; M. Brookhart and W. B. Studabaker, Chem. Rev., 1987, 87, 411; R. R. Schrock, and K. H. Dötz, in Reactions of Coordinated Ligands, ed. P. S.

Braterman, Plenum Press, New York, 1986, ch. 3, pp. 221–284, and ch. 4, pp. 285–370 respectively; K. H. Dötz, *Transition Metal Carbene Complexes*, Verlag Chemie, Weinheim, 1983.

- 3 M. L. H. Green and D. O'Hare, J. Chem. Soc., Dalton Trans., 1986, 2469; J. A. Bandy, M. L. H. Green and D. O'Hare, J. Chem. Soc., Dalton Trans., 1986, 2477.
- 4 J. M. Martínez, H. Adams, N. A. Bailey and P. M. Maitlis, J. Chem. Soc., Chem. Commun., 1989, 286; I. M. Saez, D. G. Andrews and P. M. Maitlis, Polyhedron, 1988, 7, 827; I. M. Saez, N. J. Meanwell, A. Nutton, K. Isobe, A. Vázquez de Miguel, D. W. Bruce, S. Okeya, D. G. Andrews, P. R. Ashton, I. R. Johnstone and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1986, 1565.
- 5 (a) F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1984, 23, 89 and references therein; (b) J. C. Jeffery and M. J. Went, Polyhedron, 1988, 7, 775 and references therein.
- 6 R. J. Al-Essa, R. J. Puddephatt, D. C. L. Perkins, M. C. Rendle and C. F. H. Tipper, J. Chem. Soc., Dalton Trans., 1981, 1738; S. S. M. Ling and R. J. Puddephatt, J. Chem. Soc., Chem. Commun., 1982, 412.
- 7 See for example: J. Miller and A. L. Balch, *Inorg. Chem.*, 1972, 11, 2069; M. Wada, N. Asada and K. Oguro, *Inorg. Chem.*, 1978, 17, 2353; M. Wada, K. Sameshima, K. Nishiwaki and Y. Kawasaki, *J. Chem. Soc., Dalton Trans.*, 1982, 793; E. Carmona, P. Palma, M. Paneque and M. L. Poveda, *Organometallics*, 1990, 9, 583.
- 8 E. O. Fischer and H. J. Beck, Angew. Chem., Int. Ed. Engl., 1970,
 9, 72; M. Berry, J. A. K. Howard and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1601; X. L. R. Fontaine, S. J. Higgins,
 B. L. Shaw, M. Thornton-Pett and W. Yichang, J. Chem. Soc., Dalton Trans., 1987, 150.
- 9 J. G. Davidson, E. K. Barefield and D. G. Van Derveer, Organometallics, 1985, 4, 1178.
- 10 M.J. Chetcuti, B. E. Grant and P. H. Fanwick, *Organometallics*, 1990, 9, 1345.
- 11 E. Carmona, J. M. Marín, M. Paneque and M. L. Poveda, Organometallics, 1987, 6, 1757.
- 12 R. T. Adams, F. A. Cotton and R. A. Rusholme, J. Coord. Chem., 1971, 1, 275.
- 13 R. A. Jones and B. R. Whittlesey, Inorg. Chem., 1986, 25, 852.
- 14 R. Goddard, C. Krüger, K. R. Pörschke and G. Wilke, J. Organomet. Chem., 1986, 308, 85; D. L. Delaet, P. E. Fanwick and C. P. Kubiak, Organometallics, 1986, 5, 1807; D. L. Delaet, R. del Rosario, P. E. Fanwick and C. P. Kubiak, J. Am. Chem. Soc., 1987, 109, 754; D. L. Delaet, P. E. Fanwick and C. P. Kubiak, J. Chem. Soc., Chem. Commun., 1987, 1412.
- 15 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 711.
- 16 K. A. O. Starzewski and J. Witte, Angew. Chem., Int. Ed. Engl., 1985, 24, 599.
- 17 E. N. Jacobsen, K. I. Goldberg and R. G. Bergmann, J. Am. Chem. Soc., 1988, 110, 3706.
- 18 G. Minghetti, A. Albinati, A. L. Bandini and G. Banditelli, Angew. Chem., Int. Ed. Engl., 1985, 24, 120.
- 19 J. M. Stewart, F. A. Kundell and J. C. Baldwin, in *The X-ray 80 system*, Computer Science Center, University of Maryland, College Park, Maryland, 1980.