Cobalt(l1)-Tetraphenylporphyrin-Pyridine Complex fixed on a Glassy Carbon Electrode and its Prominent Catalytic Activity for Reduction of Carbon Dioxide

Takashi Atoguchi,^a Akiko Aramata,*a Akio Kazusakab and Michio Enyoa

^aCatalysis Research Center, Hokkaido University, Sapporo 060, Japan

^bFaculty of Veterinary Medicine, Hokkaido University, Sapporo 060, Japan

Cobalt(ii)-tetraphenylporphyrin (Co^{li}tpp)-fixed glassy carbon (GC) electrodes were prepared using 4-aminopyridine (pyNH₂) in the form of Co^{ll}tpp-pyNH-CO/GC, which were active for electroreduction of CO₂ to CO at potentials 100 mV more positive than water-soluble Co^{il} porphyrins, and the overall turnover number of Co^{ilt}pp for CO production exceeded 105.

Metalloporphyrins have been reported to be active as catalysts in the electroreduction of $CO₂$ in aqueous¹ and nonaqueous² media. In aqueous media, water-soluble Co^{II}tetraphenylporphyrin sulphonate and Co^{II}meso-tetracarboxyphenylporphyrin have been reported to be catalytically active for the electroreduction of $CO₂$. Pyridine (py) is reported to coordinate at the axial position of planar Co^{II}(salen) (H₂salen = bissalicylideneethylenediamine) and stabilizes $CO₂$ in the opposite coordination site.3 In the present work, we attempted to obtain a CoIItpp-py (tpp = tetraphenylporphyrin) complex-fixed electrode by applying the water-insoluble Co^{II}tpp on glassy carbon (GC) substrate plates modified initially with 4-aminopyridine (pyNH₂). 4-Aminopyridine is expected not only to immobilize Co^H tpp on the GC electrode, but also to provide the Co^{II}tpp-fixed GC electrode with new properties.

CoIItpp-pyNH-CO/GC **(I)** was prepared as follows Glassy carbon (GC) plates (Tokai GC-30, 27 mm x *5* mm, 1 mm thick) were subjected to anodic oxidation in 0.5 mol dm⁻³ $H₂SO₄$, and refluxed in SOCl₂ for 24 h, for chlorination as

Fig. 1 (a) Diffuse reflectance UV-VIS spectrum of Co^{II}tpp-pyNH-CO/GC (electrode **I)** and UV-VIS spectra of *(b)* CoIItpp and *(c)* Co^H tpp-py in $CH₂Cl₂$

COCl/GC. The electrodes were then immersed in 4-aminopyridine-saturated benzene solution for 24 h at room temperature to produce pyNH-CO/GC **(11).** Finally, the electrodes were refluxed in a 0.6 mmol dm⁻³ Co^{II}tpp solution in benzene for 24 h to produce **I.**

The fixation of 4-aminopyridine was confirmed by the diffuse reflectance FT IR spectrum of **11,** which showed a peak at 1665 cm⁻¹ due to C=O stretching of the -CO-NH- amide group together with pyridine ring C=C and C=N stretching peaks at 1610 and 1537 cm⁻¹, respectively. These results showed that 4-aminopyridine was fixed in the form of pyNH–CO/GC. Fig. $1(a)$ shows the diffuse reflectance UV– **VIS** spectrum of **I**, together with spectra of (b) Co^{II}tpp and (c) Co^{II}tpp-py in CH₂Cl₂ for comparison. Spectra (a) and (c) show the Soret band at 440 nm, whereas that of *(b)* is at 420 nm. These spectra indicated that Co^{II}tpp was fixed as the pyridine complex, Co^{II}tpp-py, and the electron density of the central Co^{II} ions of **I** was increased by the pyridine ligand.⁵

Fig. 2 shows cyclic voltammograms (CV) of **I** in standard phosphate buffer solution at pH 6.86 saturated with He or $CO₂$. No Co^H tpp/Co^Itpp redox peak was observed, but this is probably due to the small amount of Co^{II}tpp distributed on the electrode which has a high roughness factor (3×10^3) . The surface concentration of Co^{II} tpp of (10⁻¹² mol cm⁻²; apparent surface area) was evaluated by ESCA. A pronounced increase of the cathodic current was observed at potentials more negative than -0.95 V [vs. saturated calomel electrode (SCE)] in $CO₂$ -saturated solution, this increase starting at potentials 100 mV more positive than when water-soluble Co^{II} porphyrins are employed. 1 This result demonstrates that the Co^{II}tpp-py complex fixed on glassy carbon is catalytically

Fig. 2 Cyclic voltammograms of electrode **I** in phosphate buffer (pH 6.86) in the presence of (a) $CO₂$ and (b) He at room temperature; scan rate 1 mV s⁻¹. $X = 0$ V *vs.* reversible hydrogen electrode

active for $CO₂$ electroreduction in aqueous medium, even though CoIItpp is insoluble in water. Such an increase in the $CO₂$ reduction current was not observed on a plain GC electrode and electrode **II**, having no Co^{II}tpp-py complex. The potential at which $CO₂$ reduction starts is close to the half-wave potential of Co^H tpp/Co¹tpp of -1.03 V (SCE) in pyridine.6 These facts imply that the Co'tpp, which was generated by the Co^H/Co^I redox reaction, catalysed the reduction of $CO₂$.

Prolonged potentiostatic electrolysis was carried out at -1.2 V (SCE) in CO₂-saturated solution. Gaseous products of the electrolysis were found to be CO and H_2 by gas chromatography. Neither formate ions nor other possible species produced in the catholyte were observed by FT IR **ATR** (attenuated total reflection) spectrometry. The current efficiency for CO was higher than 50%, with the balance H_2 . No significant decrease of the reduction current was observed for more than 4 h. The overall turnover number of the fixed complex, Co^H tpp-py, for $CO₂$ reduction exceeded $10⁵$, contrasting with earlier data which showed that in most cases the overall turnover number of such metal complex catalysts is limited to 10²;⁷⁻⁹ the electrode **I** is thus very stable for the electroreduction of CO₂.

To sum up, significantly high electrocatalytic activity and stability of I for $CO₂$ reduction to CO was observed in aqueous solution. This was probably caused by the increased electron density of the central Co^{II} ions by coordination of pyridine.

Indeed, in the case of $Co(salen)$,³ pyridine is known to stabilize Co(salen)-coordinated $CO₂$ by the increased electron density of the central Co^{II} ions. A similar role of pyridine may be expected for the Co^{II}tpp-pyNH-CO/GC, which accommodates $CO₂$ in the partially charged form $CO₂$ ^{δ} and so easily reduces it to CO in aqueous medium.

Received, 27th June 1990; Corn. 0102893B

References

- 1 K. Takahashi, K. Hiratsuka, H. Sasaki and **S.** Toshima, *Chem. Lett.,* 1979, 305.
- 2 J. Y. Becker, B. Vainas, R. Eger (née Levin) and L. Kaufman (née Ovenstein), *J. Chem. SOC., Chem. Commun.,* 1985, 1471.
- 3 C. Floriani and G. Fachinett, *J. Chem.* SOC., *Chem. Commun.,* 1974, 615.
- 4 B. F. Watkins, J. R. Behling, E. Kariv and L. L. Miller, *J. Am. Chem.* **SOC.,** 1975,97,3549.
- 5 W. **S.** Caughey, R. M. Deal, B. D. McleesandJ. 0. Alben, *J. Am. Chem.* SOC., 1962, **84,** 1735.
- 6 F. **A.** Walker, D. Beroiz and K. M. Kadish, *J. Am. Chem. SOC.,* 1976, 98, 3484.
- 7 M. Beley, J.-P. Collin, R. Ruppert and J.-P. Sauvage, *J. Chem.* SOC., *Chem. Commun.,* 1984, 1315.
- 8 *C.* M. Bolinger, N. Story, B. P. Sullivan and T. J. Meyer, *Inorg. Chem.,* 1988, **27,** 4582.
- 9 H. C. Hurrel, A. L. Mogstad, D. A. Usifer, K. T. Potts and H. P. Abrufia, *lnorg. Chem.,* 1989, **28,** 1080.