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A Unique 3-Chlorobutenolide Annulation Sequence 
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Spiro 3,3-dichlorooxetane-2-ones rearrange under Lewis acid catalysis, accompanied by loss of HCI, to afford fused 
3-chlorobutenolides in high yield. 

Unsaturated lactones, fused to a carbocyclic ring, are common 
in biologically active natural products, consequently a number 
of synthetic strategies have been recorded.1 In almost all 
cases, fused butenolides are prepared via oxidation of the 
corresponding saturated lactones; this typically adds at least 
two steps to the sequence. We wish to report a novel sequence 
that enables the annulation of a 3-chlorobutenolide function- 
ality to a cycloalkanone in only three steps. Chlorobutenolides 
are particularly attractive moieties since they serve not only as 
facile Michael acceptors,* but can be easily converted to alkyl 
or unsubstituted butenolides via metallation.3 

The key reaction in this sequence, shown in Scheme 1, 
entails the ring expansion of spiro 3,3-dichlorooxetane-2-ones 
((3-lactones) with the concommitant elimination of hydrogen 
chloride to afford a butenolide. Although spiro (3-lactones are 
accessible in a single step via the cycloaddition of dichloro- 
ketane to cycloalkanones,4 our experience with difficult 
work-up and low yields for this transformation led us to 
examine other approaches. After significant experimentation, 

Table 1 

Yield of vce0 
Compounds n 4(%) /cm-1 

a 7 71 1775.1 
b 8 73 1770.0 
C 10 75 1771.1 
d 12 83 1774.0 
e 15 92 1774.7 

we developed a very serviceable method that involves the 
synthesis of dichloro (3-hydroxy acids5 followed by dehydra- 
tion to the (3-lactones. As indicated in Table 1, the yields are 
quite high for all ring sizes examined. 

The specifics are illustrated for the preparation of fused 
butenolide 4e. Cyclopentadecanone l e  was added to a solution 
of dilithiodichloroacetate (from dichloroacetic acid and two 
equivalents of lithium diisopropylamide) in tetrahydrofuran- 
hexamethylphosphoramide at - 84 "C (liquid nitrogen-ethyl 
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Scheme 1 Reagents and conditions: i ,  Cl,CLiCO,Li; ii, PhS02C1, 
pyridine; iii, MgBr;?, Et,O 
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acetate bath) and quenched at -84 "C? to afford the 
(3-hydroxy acid 2e, which was converted without purification$ 
to the (3-lactone 3e upon treatment with benzenesulphonyl 
chloride in pyridine at 0 "C.6 After purification via bulb-to- 
bulb distillation, 3e was treated with freshly prepared anhy- 
drous magnesium bromide etherate§ in ether for 8 h to afford 
the fused 3-chlorobutenolide 4e in 92% yield. 

i This is critical to avoid the formation of the epoxy acid 

$ Attempts to purify these materials, via chromatography or distilla- 
tion, invariably resulted in decomposition. IR spectroscopy was 
employed to establish the presence of a carboxylic acid function (vcz0 
ca. 1705 cm-I). 

9 Prepared via the reaction of magnesium with 1,2-dibromoethane. 

A reasonable mechanism for this intriguing transformation 
is formation of the 2,2-dichloro 3-alkenoic acid via an El-type 
process, followed by a metal-assisted S N 2 '  cyclization (Scheme 
2) .7 This aspect is currently being examined experimentally. 7 

The operational simplicity and brevity of this sequence 
should provide an attractive alternative to the currently 
available synthetic methods for the synthesis of fused buten- 
olides. We are actively pursuing extensions of this method to 
other butenolides bearing a variety of a substituents. 
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