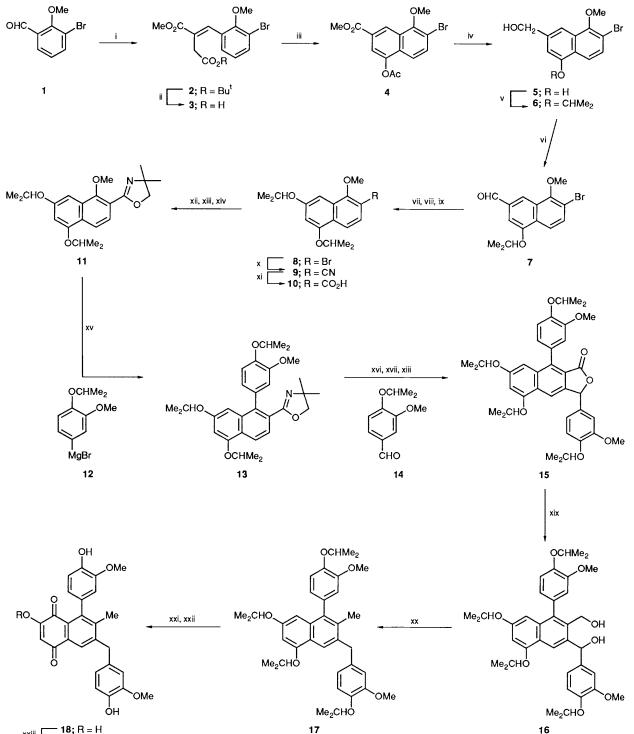
Synthesis of Larreantin, a Novel, Cytotoxic Naphthoquinone from Larrea tridentata

Mark F. Comber and Melvyn V. Sargent*

Department of Organic Chemistry, The University of Western Australia, Nedlands, Western Australia, 6009

Larreantin, a biogenetically unique cytotoxic naphthoquinone, has been synthesized by a convergent route which depends upon the selective functionalization of a naphthyldihydro-oxazole.


Cordell and his co-workers¹ have recently isolated the highly cytotoxic naphthoquinone, larreantin **19**, from the roots of the creosote bush, *Larrea tridentata* (DC) Coville (Zygophyllaceae). The structure of larreantin, which represents an unprecedented class of naphthoquinone, and which appears to be derived biogenetically by the combination of two isomeric phenylpropene groups with a benzoquinone, was based on extensive application of high field NMR techniques.¹ We now confirm this structure by a convergent synthesis.

For this purpose we adopted as the key intermediate the naphthyldihydro-oxazole 11. The intention was to take advantage of the directing power of the dihydro-oxazole moiety to introduce an aryl group by displacement of the o-methoxy group by an aryl Grignard reagent, and to

introduce a benzyl group into the other *ortho*-position by lithiation and subsequent reaction with an electrophile.² The protected 1,3-oxygenation in the above intermediate would also serve as a precursor to the quinonoid system.³

The known aldehyde 1^4 was caused to react with 2-*tert*butoxycarbonyl-1-methoxycarbonylethylidenetriphenylphosphorane⁵ and hydrolysis of the resultant ester 2^{\dagger} gave the acid $3,^{\dagger}$ which on ring-closure provided the acetate $4.^{\dagger}$ Reduction of this intermediate afforded the diol $5,^{\dagger}$ which was selectively converted into the isopropyl ether $6.^{\dagger}$ Manganese dioxide oxidation furnished the aldehyde 7^{\dagger} which on Baeyer–Villiger

[†] New compounds gave satisfactory elemental analyses and spectra in accord with the assigned structures.

Scheme 1 Reagents and conditions: i, Ph₃P: C(CO₂Me)CH₂CO₂Bu^t, PhH, reflux, 20 h, 91%; ii, 90% aq. CF₃CO₂H, 25 °C, 15 min, 95%; iii, Ac₂O, KOAc, reflux, 5 min, 84%; iv, DIBAL, THF, -10 °C, 94%; v, Me₂CHBr, DMF, K₂CO₃, Ar, 25 °C, 96 h, 82%; vi, MnO₂, CH₂Cl₂, 25 °C, 12 h, 90%; vii, *m*-ClC₆H₄CO₃H, CH₂Cl₂, reflux, 72 h; viii, NaOMe, MeOH, Ar, 5 min; ix, Me₂CHBr, DMF, K₂CO₃, Ar, 50 °C, 72 h, 26% overall; x, CuCN, DMF, reflux, N₂, 12 h, 95%; xi, NaOH, aq. MeOH, reflux, 96 h, 85%; xii, (COCl)₂, CH₂Cl₂, 25 °C, 2.5 h; xiii, HOCH₂CMe₂NH₂, CH₂Cl₂, 25 °C, 2 h; xiv, SOCl₂, CH₂Cl₂, 25 °C, 2 h, 81% overall; xv, 12, THF, 25 °C, Ar, 45 min, 88%; xvi, Bu^sLi, THF, TMEDA, -78 °C, Ar, 1 h; xviii, 14, -78-25 °C, 1 h; xviii, conc. HCl, dioxane, reflux, 0.5 h, 59% overall; xix, LiAlH₄, THF, Ar, 25 °C, 2 h, 99%; xx, THF, Et₃N, (CF₃CO)₂O, 10% Pd/C, H₂, 18 h, 80%; xxi, BCl₃, CH₂Cl₂, Ar, -10 °C, 8 h; xxii, KOH, EtOH, EtOAc, air, 30 s; xxiii, MeI, KHCO₃, DMF, Ar, 8h, 13% overall (DIBAL = diisobutylaluminium hydride; THF = tetrahydrofuran; DMF = dimethyleformamide; TMEDA = tetramethylethylenediamine.)

oxidation, hydrolysis of the intermediate formate, and subsequent isopropylation afforded the intermediate 8.[†] Displacement of the bromine with copper(1) cyanide now supplied the nitrile 9[†] and then hydrolysis gave the acid 10,[†] which was converted into the required dihydro-oxazole 11[†] by the standard method.⁶

The dihydro-oxazole 11 was now caused to react with the Grignard reagent 12 and the arylated product 13^{+} was lithiated with *sec*-butyl lithium. The resultant lithio-derivative underwent smooth reaction with the known aldehyde 14^{7} and anchimerically assisted hydrolysis of the intermediate hindered dihydro-oxazole provided the phthalide 15.† Reduction

of this intermediate with lithium aluminium hydride yielded the diol 16.[†] In order to prevent cyclization to the derived 1,3-dihydronaphtho[2,3-c]furan the diol was catalytically hydrogenated in the presence of trifluoroacetic anhydride and an excess of triethylamine, which smoothly afforded the deoxygenated product 17.[†] Deprotection of this intermediate and brief aerial oxidation of the anion of the resultant tetrol gave the quinone 18, which was immediately selectively methylated thereby providing larreantin 19^{+} in an overall yield of 0.5% for 23 steps. The physical properties of the synthetic material were identical to those of the natural product.¹

Received, 9th October 1990; Com. 0/04545D

References

- 1 Z. Luo, D. Meksuriyen, C. A. J. Erdelmeier, H. H. S. Fong and G. A. Cordell, J. Org. Chem., 1988, 53, 2183.
- 2 A. I. Meyers and W. B. Avila, J. Org. Chem., 1981, 46, 3881.
- 3 G. Soliman and A. Latif, J. Chem. Soc., 1944, 55.
- 4 P. A. Aristoff, A. W. Harrison and A. M. Huber, *Tetrahedron* Lett., 1984, 3955.
- K. A. Rizzacasa and M. V. Sargent, Aust. J. Chem., 1987, 40, 1737;
 A. F. Cameron, F. D. Duncanson, A. A. Freer, V. W. Armstrong and R. Ramage, J. Chem. Soc., Perkins Trans. 2, 1975, 1030.
- 6 A. I. Meyers, R. Gabel and E. D. Mihelich, J. Org. Chem., 1978, 43, 1372.
- 7 R. Dickinson, I. M. Heilbron and F. Irving, J. Chem. Soc., 1927, 1888.