Synthesis and Structure of the Phosphorane P(CH₂Cl)Cl₄

Keith B. Dillon* and Thomas A. Straw

Chemistry Department, University of Durham, South Road, Durham DH1 3LE, UK

The compound $P(CH_2CI)Cl_4$, which is molecular in the liquid phase, has been shown by solid-state ³¹P MAS NMR spectroscopy to have the structure $[P(CH_2CI)Cl_3]^+[P(CH_2CI)Cl_5]^-$; this is the first example of an organochlorophosphorane having a structure like that of solid $[PCl_4]^+[PCl_6]^-$.

While in theory there are three possible structures open to an organochlorophosphorane R_nPCl_{5-n} , these being molecular pseudo-trigonal bipyramidal (ψ -tbp) (like PF₅), ionic quasiphosphonium salt [R_nPCl_{4-n}]⁺Cl⁻ (like PBr₅) and ionic [R_nPCl_{4-n}]⁺[R_nPCl_{6-n}]⁻ (like the normal room temperature

form of PCl₅), no example of the third structure has been observed in the solid state. When R is a simple alkyl group such as Me or Et, the compounds all have quasi-phosphonium salt structures, irrespective of the value of n.¹ When R = Ph the compounds are molecular for n = 1 or 2 with equatorial

Fig. 1 ³¹P MAS NMR Spectrum of $P(CH_2Cl)Cl_4$ at 258 K (500 pulses; cross-polarisation; relaxation delay 1 s; spin rate 3000 Hz; operating frequency 121.421 MHz)

phenyl groups, while for n = 3 the PBr₅ structure is again found.¹ The more electronegative C₆F₅ group takes up an axial position in the ψ -tbp structure of P(C₆F₅)Cl₄,^{2,3} and P(CCl₃)Cl₄ has also been shown to have a molecular structure, with an axial CCl₃ group.^{4,5} These results indicate that a change of structure occurs between PMeCl₄ and P(CCl₃)Cl₄, and it was therefore of considerable interest to prepare and characterize structurally the intermediate species P(CH₂Cl)Cl₄ and P(CHCl₂)Cl₄.

The phosphorane P(CH₂Cl)Cl₄ was synthesised by careful chlorination (as monitored by ³¹P NMR spectroscopy) of P(CH₂Cl)Cl₂, which was obtained by the method of Prishchenko *et al.*⁶ [Excess of chlorine must be avoided, or P(CCl₃)Cl₄ would result.⁴] Removal of the solvent *in vacuo* gave the phosphorane as a viscous milky liquid, which slowly solidified on standing at room temperature. The ³¹P spectrum of the liquid consisted of a single resonance at δ –39.0, readily ascribed to the molecular (ψ -tbp) form. The presence of the CH₂Cl group was confirmed by recording the ¹H and ¹³C undecoupled NMR spectra J_{CH} 167.6, J_{CP} 118.5 Hz, and the identity of the compound was established by elemental analysis for chlorine. The solid-state ³¹P MAS spectrum of a freshly-prepared sample of the phosphorane, recorded at 258

K to bring it all into the solid form, is shown in Fig. 1, and consists of two signals at δ 111.1 and -206.1, assignable to the $[P(CH_2Cl)Cl_3]^+$ and $[P(CH_2Cl)Cl_5]^-$ ions respectively. Hence, the solid state structure at this temperature is akin to that of $[PCl_4]^+[PCl_6]^-$, and represents the first example of an organochlorophosphorane with the $[PRCl_5]^-$ ion as part of its normal structure.

These shift assignments were confirmed by recording the solution-state spectra of $[P(CH_2Cl)Cl_3]+[AlCl_4]^{-}[^{31}P \delta 112.4 (CH_2Cl_2)]$, $[P(CH_2Cl)Cl_3]+[SbCl_6]^{-}[^{31}P \delta 111.0 (PhNO_2)]$ and $[NEt_4]+[P(CH_2Cl)Cl_5]^{-}[^{31}P \delta -206.8 (CD_3NO_2)]$. The phosphorane reverts to the molecular form when dissolved in CH₂Cl₂ or CDCl₃, just like PCl₅ itself.

The compound decomposes slowly, even when stored in a sealed container under N_2 , giving various phosphorus-containing species including PCl_3 and PCl_6^- . This shows that the P–C bond is not very strong, as observed previously in $P(CCl_3)Cl_4^{4.7,8}$ and $P(C_2Cl_5)Cl_4.4$ Further studies on this compound, its decomposition route and its derivatives are in progress.

We thank the SERC for the award of a maintenance grant (to T. A. S.), and for the award of an allocation of spectra on the national solid-state NMR service (to K. B. D.).

Received, 12th October 1990; Com. 0/04603E

References

- 1 K. B. Dillon, R. J. Lynch, R. N. Reeve and T. C. Waddington, J. Chem. Soc., Dalton Trans., 1976, 1243.
- 2 K. B. Dillon and J. Lincoln, Polyhedron, 1985, 4, 1333.
- 3 M. Fild, R. Kurpat and T. Stankiewicz, Z. Anorg. Allg. Chem., 1978, 439, 145.
- 4 R. Ali and K. B. Dillon, submitted to J. Chem. Soc., Dalton Trans.
 5 I. A. Kjuntsel, V. A. Mokeeva, G. B. Soifer and I. G. Shaposhnikov, J. Magn. Reson., 1978, 32, 403.
- 6 A. A. Prishchenko, A. V. Gromov, M. I. Kadyko and I. P. Lutsenko, J. Gen. Chem. USSR, 1984, 54, 2250.
- 7 J. F. Nixon, J. Inorg. Nucl. Chem., 1965, 27, 1281.
- 8 A. W. Frank, Can. J. Chem., 1968, 46, 3573.