Synthesis, Structure and Reactivity of Cationic Rhodium(i) and Iridium(i) Thioether Crowns: Structures of $[M([9]aneS_3)(cod)]^+$ (M = Rh, Ir; cod = cycloocta-1,5-diene) and $[Rh([9]aneS_3)(C_2H_4)_2]$ ⁺ $([9]aneS_3 = 1,4,7$ -trithiacyclononane)

Alexander J. Blake, Malcolm A. Halcrow and Martin Schroder"

Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

Reaction of M^I species with [9]aneS₃ affords half-sandwich complexes including $[M([9]aneS₃)(cod)]+$ $[M([9]aneS_3)(code)_1+(M = Rh, Ir; coe = cyclooctene)$, $[(Rh([9]aneS_3)(C_2H_4)_2]+ [Rh([9]aneS_3)(C_2H_4)(PR_3)]+ (R = Ph,$ cyclohexyl), [Rh([9]aneS₃)(CO)(PPh₃)]+ and [Rh([9]aneS₃)(tcne)(NCMe)]+; crystal structure determinations of $[M([9]aneS₃)(cod)]+ (M = Rh, Ir)$ and $[Rh([9]aneS₃)(C₂H₄)₂]+$ confirm these complexes to be five-coordinate, and the latter species reacts with $C-X$ ($X = \text{halide}$) bonds.

The insertion of $[M(C_5Me_5)]$ and $[M(HBPz)]$ (Pz - pyrazolyl) fragments into C-H bonds of alkane and aromatic substrates has been reported for $M = Rh^I$ and Ir^I.^{1,2} We have been interested in developing alternative methodologies for the stabilisation of facially protected mononuclear RhI and IrI centres using 6-electron donor ligands. [9]ane S_3 is particularly attractive in this respect: its ability to act as an efficient facial blocking group for a range of transition metal centres is now well established,³ and would afford thioether coordination at the metal centre rather than the more usual N- (pyrazolylborate), P- (triphos) or carbocyclic (arene, cyclopentadienyl) C-donation. In addition, few examples of genuinely lowvalent metal complexes of thioether crowns have been reported.^{4,5} Most of these are Mo⁰ complexes incorporating S_4 -donor ligands;⁵ no structural or synthetic data on thioether crown complexes incorporating ethylene have been described previously.

Reaction of $[MCl(cod)]_2$ (cod = cycloocta-1,5-diene) with

two molar equivalents of $[9]$ aneS₃ in MeOH (for Rh) or in CH_2Cl_2 (for Ir) containing NaBF₄ affords $[M([9]aneS_3)-]$ (cod)] $+$ in 70% (Rh) and 30% (Ir) yields. $+$ The single crystal X-ray structure $\$ of $[Rh([9]aneS_3)(cod)]^+$ shows (Fig. 1) five-coordination about Rh^I with [9]aneS₃ bound facially *via* all three S-donors. Two crystallographically independent complex cations are observed in the asymmetric unit each having the cod ligand bound in an **q4** manner. **A** similar five-coordinate structure is observed for $[Ir([9]aneS_3)-]$ Examplex cations are observed in the asymmetric time each
having the cod ligand bound in an η^4 manner. A similar
five-coordinate structure is observed for $[\text{Ir}([\text{9}] \text{aneS}_3)-$
cod)⁺.8 if These complexes are therefor and this is reflected in their relative stability and inertness. Loss of the chelated cod ligand occurs slowly in solution under ambient conditions; thus, reaction of $[Rh([9]aneS₃)(cod)]^+$ with tcne (tcne = tetracyanoethylene) in MeCN affords $[Rh[9]$ aneS₃(tcne)(NCMe)^{$]+$} involving bound tcne.[†]

Reaction of $[MCl(C₂H₄)₂]$ ₂ with two molar equivalents of [9]ane S_3 in MeOH (for Rh) and in tetrahydrofuran (thf) (for

 $\frac{1}{4}$ Crystal data for C₁₄H₂₄S₃Rh+BF₄-, *M* = 478.20, triclinic, space group $P\overline{1}$, $a = 11.491(13)$, $b = 12.803(6)$, $c = 13.377(15)$ Å, $\alpha =$ 88.12(7), $\beta = 70.30(8)$, $\gamma = 74.68(7)$ °, $\gamma = 1784 \text{ Å}^3$ (from setting angles for 14 reflections with $2\theta = 42-44^{\circ}$, $\bar{\lambda} = 1.54184 \text{ Å}$, $T = 298 \text{ K}$), $Z = 4$, $D_c = 1.781$ g cm⁻³, $\mu = 11.482$ mm⁻¹. $F(000) = 968$. STADI-4 diffractometer, graphite-monochromated Cu-K α X-radiation, $T =$ 298 K, ω -2 θ scans, 2838 unique data collected (2 θ_{max} 90°, $h - 9 \rightarrow 10$, $k - 11 \rightarrow 11, l0 \rightarrow 12$), initial correction for absorption by means of Ψ scans (min. and max. transmission factors 0.0182, 0.0889 respectively), giving 2585 reflections with $F \geq 6\sigma(F)$ for use in all calculations. No significant crystal decay or movement was observed. A Patterson synthesis located both Rh atoms and iterative cycles of least-squares refinement and difference Fourier synthesis located the remaining non-H atoms. At isotropic convergence, final corrections (min. 0.794, max. 1.631) were applied empirically using DIFABS.¹¹ The structure was then refined (by least-squares on F^{12}) with anisotropic thermal parameters for Rh, **S,** F and C and with **H** atoms included at fixed, calculated positions.¹² At final convergence R , R_w = 0.0590, 0.0866 respectively, $S = 1.069$ for 407 refined parameters and the final ΔF synthesis showed no feature above 1.01 e \AA^{-3} . An isotropic extinction correction refined to 1.0×10^{-6} . The weighting scheme $w^{-1} = \sigma^2(F) + 0.007284F^2$ gave satisfactory agreement analyses and in the final cycle $(\Delta/\sigma)_{\text{max}}$ was 0.008.

9 Atomic scattering factors were inlaid12 or taken from ref. 15, molecular geometry calculations utilised CALC¹⁶ and the Figures were produced by ORTEPII.¹⁷ Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited with the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

T Crystal data for $C_{14}H_{24}S_3Ir^+PF_6^-$: $M = 625.7$, monoclinic, space group $P2_1/c$, $a = 9.6404(8)$, $b = 11.9222(14)$, $c = 17.2174(18)$ \mathring{A} , $\beta =$ $103.957(8)^\circ$, $V = 1920.5 \text{ Å}^3$ [from 20 values of 42 reflections measured at $\pm \omega$ (2 θ = 24-26°, $\bar{\lambda}$ = 0.71073 Å), *T* = 298 K], *Z* = 4, *D_c* = 2.164 g cm⁻³, $\mu = 7.372$ mm⁻¹. A pale yellow plate, $0.031 \times 0.084 \times$ 0.290 mm, grown from MeCN-Et₂O, was mounted on a Stoe STADI-4 four-circle diffractometer. Data collection employing graphite-monochromated Mo-K α X-radiation, ω -20 scans and the learnt-profile method¹³ yielded 3709 amplitudes to $2\theta_{\text{max}} = 45^{\circ}$. Initial corrections for absorption were applied by means of Ψ scans. Merging of equivalent reflections gave 2372 unique data *(Rint* = 0.035), of which 1919 with $F \ge 6\sigma(F)$ were used in all calculations. No significant crystal decay or movement was observed. A Patterson synthesis located the Ir and iterative cycles of least-squares refinement and difference Fourier synthesis located the remaining non-H atoms. At isotropic convergence, final corrections for absorption were applied empirically using DIFABS.¹¹ The structure was then refined (by least-squares on F^{12}) with anisotropic thermal parameters for Ir, S, P, F and the C atoms of the cod ligand. The C atoms in the $[9]$ aneS₃ ligand were found to be disordered but the application of constraints $(\overline{S}-C = 1.83, C-C = 1.52 \text{ Å}; \angle{SCC} = 109.5^{\circ})$ allowed the refinement of two equally occupied conformations. H atoms were included at fixed, calculated positions.¹² At final convergence *R*, $R_w = 0.0407$, 0.0521 respectively, $S = 1.162$ for 220 refined parameters and the final ΔF synthesis showed no $\Delta \rho$ above 1.40 e \mathbf{A}^{-3}

Fig. 1 Single crystal X-ray structure of $[Rh([9]aneS₃)(cod)]^{+}$. Bond lengths (\tilde{A}) are given for independent cations (a) and (b) . Cation (b) is shown. *(a)* Rh(1)-S(l) 2.322(3), Rh(1)-S(4) 2.400(3), Rh(1)-S(7) 2.451(3), Rh(1)–C(11) 2.069(12), Rh(1)–C(12) 2.133(12), Rh(1)– $C(15)$ 2.223(12), Rh(1)-C(16) 2.199(12), C(11)-C(12) 1.424(17), 2.441(3), Rh(2)-S(27) 2.436(3), Rh(2)-C(31) 2.108(13), Rh(2)-C(32) 2.080(11), Rh(2)–C(35) 2.193(15), Rh(2)–C(36) 2.214(18), C(31)– C(15)-C(16) 1.377(17) Å. (b) Rh(2)-S(21) 2.305(3), Rh(2)-S(24) C(32) 1.408(17), C(35)–C(36) 1.279(23) Å. Bond lengths (Å) for $[Ir([9]aneS_3]cod]^{+}$; Ir-S(1) 2.319(5), Ir-S(4) 2.343(4), Ir-S(7) 2.419(4), Ir-C(11) 2.188(15), Ir-C(12) 2.141(15), Ir-C(15) 2.166(14), Ir-C(16) 2.199(14), $C(11)-C(12)$ 1.418(21), $C(15)-C(16)$ $1.411(19)$ Å.

Ir) containing NaBF₄ affords the reactive species $[M([9]aneS₃)(\tilde{C}₂H₄)₂]$ ⁺ in 50% yield for both Rh and Ir. A crystal of the RhI complex was picked from the cold mother liquor and protected by an atmosphere of cold $CO₂$ gas during transfer to a Stoe STADI-4 four-circle diffractometer equipped with an Oxford Cryosystems low-temperature device.⁶ The single crystal X-ray structure $\{\|\}$

Crystal data for $C_{10}H_{20}S_3Rh + BF_4$, $M = 426.12$, monoclinic, space group $P2_1/c$, $a = 10.720(12)$, $b = 8.547(17)$, $c = 32.89(5)$ Å, $\beta =$ $92.62(11)$ ^o, $V = 3011 \text{ Å}^3$ (from setting angles for 12 reflections with 20 $= 15-26^\circ$, $\bar{\lambda} = 0.71073$ Å, $T = 173 \pm 0.1$ K), $Z = 8$, $D_c = 1.880$ g cm⁻³, $\mu = 1.541$ mm⁻¹, $F(000) = 1712$. STADI-4 diffractometer, graphitemonochromated Mo-Kα X-radiation, *T* = 173 K, ω-20 scans, 5030 data collected (20_{max} 45°, *h* − 11 → 11, *k* 0 → 9, *l* 0 → 35), 3237 unique $(R_{int} = 0.091)$, giving 1612 reflections with $F \ge 4\sigma(F)$. A drift curve based on the variation in the intensity of three standard reflections was applied to the data during processing. A Patterson synthesis located both Rh atoms and iterative cycles of least-squares refinement and difference Fourier synthesis located the remaining non-H atoms. At isotropic convergence, final corrections (min. 1.127, max. 1.689) were applied empirically using DIFABS.¹¹ The structure was then refined (by least-squares on F^{12}) with anisotropic thermal parameters for Rh, **S** and F. Macrocyclic H atoms were included at fixed, calculated positions,¹² while those of the ethylene molecules were placed by analogy with a related complex.¹⁴ At final convergence *R, R_w* = 0.0825, 0.0910 respectively, $\dot{S} = 1.179$ for 233 refined parameters and the final ΔF synthesis showed no feature above 1.17 e \AA^{-3} . The weighting scheme $w^{-1} = \sigma^2$ (*F*) + 0.00185*F*² gave satisfactory agreement analyses and in the final cycle $(\Delta/\sigma)_{\text{max}}$ was 0.017.

t These complexes have been characterised by IR and UV spectroscopy, ¹H, ¹³C and, where appropriate, ³¹P NMR and fast-atom bombardment mass spectroscopy, and by elemental analysis.

Fig. 2 Single crystal X-ray structure of $[Rh([9]aneS_3)(C_2H_4)_2]^+$. Bond lengths (A) are given for independent cations *(a)* and *(b)*. Both cations are shown. *(a)* Rh(1)-S(l) 2.322(9), Rh(1)-S(4) 2.437(9), Rh(1)-S(7) 2.432(9), Rh(1)-C(11) 2.21(4), Rh(1)-C(12) 2.21(5), Rh(1)-C(13) 2.12(5), Rh(1)-C(14) 2.05(4), C(ll)-C(12) 1.33(6), C(13)-C(14) 1.43(6) A. *(b)* Rh(2)-S(21) 2.337(9), Rh(2)-S(24) 2.327(10), C(33)–C(34) 1.41(5) Å. Rh(2)-S(27) 2.469(10), Rh(2)-C(31) 2.11(3), Rh(2)-C(32) 2.18(4), Rh(2)-C(33) 2.15(4), Rh(2)-C(34) 2.22(3), C(31)-C(32) 1.43(5),

 $[Rh([9]aneS_3)(C_2H_4)_2]$ ⁺ confirms (Fig. 2) five-coordination at the Rh^I centre. As with $[Rh([9]aneS₃)(cod)]^{+}$, two crystallographically independent cations are observed in the asymmetric unit; cation *(a)* shows one short and two long Rh-S distances while the other, cation *(b),* shows two short and one long distances. Cations *(a)* and *(b)* also differ in the relative orientation of the $[9]$ ane S_3 ring to the coordinated ethylene. The Rh-S bond lengths in these Rh¹ structures are longer than
in related Rh^{III} complexes.⁷ The related species in related Rh^{III} complexes.⁷ The related species $[M([9]aneS₃)(coe)₂]$ ⁺ (coe = cyclooctene) can be prepared by reaction of $[MCl(coe)_2]_2$ with two molar equivalents of [9]aneS₃, while reaction of [9]aneS₃ with $[RhCl(CO)(PPh₃)₂]$ affords $[Rh([9]aneS_3)(CO)(PPh_3)]^+$.

The C_2H_4 ligands in $[Rh([9]aneS_3)(C_2H_4)_2]^+$ are not particularly labile and substitution of C_2H_4 by PR_3 or CO does not readily occur up to the decomposition temperature of the compound in solution. Thus, no carbonyl complex could be isolated on reaction of $[Rh([9]aneS_3)(C_2H_4)_2]^+$ with CO in refluxing thf. This may reflect the inertness of the 18-electron metal centre. The related complex $[Rh(C_5Me_5)(C_2H_4)_2]$ likewise adds nucleophiles only under vigorous conditions, with alkene exchange occurring very slowly at room temperature.⁸ Reaction of $[Rh_2Cl_2(C_2H_4)_2]$ with PR₃ followed by addition of $[9]$ aneS₃ and NaBF₄ or NH₄PF₆ affords $[Rh([9]aneS_3)(PR_3)(C_2H_4)]$ ⁺ $[R = Ph, cyclohexyl (Cy)]$ and $[Rh([9]aneS_3)(PPh_3)_2]^{+}$.

Weak metal \rightarrow alkene π back-bonding would be expected in $[Rh([9]aneS₃)(C₂H₄)₂]$ ⁺ owing to the cationic charge on the complex. The ¹H NMR spectrum (233 K, CD_3COCD_3 , 360 MHz) of $[Rh([9]aneS_3)(C_2H_4)_2]^+$ shows alkene resonances at δ 2.76 (d, $^{2}J_{H-Rh}$ 1.56 Hz) and the ¹³C NMR spectrum (233 K, CD_3COCD_3 , 50.32 MHz) shows δ 51.41 (d, $^{1}J_{\text{C-Rh}}$ 9.63 Hz) for the alkene C-centres. Alkene rotation is not frozen out for this complex down to 183K. $[Ir([9]aneS₃)(C₂H₄)₂)]⁺$ shows alkene resonances at δ 2.19 and 34.35 by ${}^{1}H$ (298 K, CD₃COCD₃, 360 MHz) and ¹³C (50.32 MHz) NMR spectroscopy respectively. Lowering the temperature to 178 K leads to near collapse of the ¹H NMR signals for the coordinated ethylene suggesting a coalescence temperature of near 170 K, beyond the range of the solvent. The Raman spectrum of $[Rh([9]aneS_3)(PCy_3)(C_2H_4)]^+$ shows the C=C stretching vibration, $v_{C=C}$, at 1550 cm⁻¹.

The results described herein confirm that five-coordinate half-sandwich species incorporating the $[Rh([9]aneS₃)]$ + fragment, the thioether analogues of $[Rh(C_5Me_5)]$ and [Rh(HBPz)], can be synthesised, and suggest that the RhI complex⁷ $[\text{Rh}([9] \text{aneS}_3)_2]^+$ is most likely five-coordinate in the solid state. Loss of ethylene from $\text{[Rh([9]aneS_3)(C_2H_4)_2]^+}$ would, in principle, afford the 16-electron fragment $[Rh([9]aneS_3)(C_2H_4)]$ which should insert into substrate molecules.¹⁰ Indeed, dissolution of $\text{[Rh([9]aneS_3)(C_2H_4)_2]^+}$ or $[Rh([9]aneS_3)(C_2H_4)PR_3]^+$ in CH_2Cl_2 affords or $[Rh([9]aneS_3)(C_2H_4)PR_3]^+$ in CH_2Cl_2 affords
 $[Rh([9]aneS_3)(CH_2Cl)Cl(C_2H_4)]^+$ and $[Rh([9]aneS_3)-]$ $\text{[CH}_2\text{Cl})\text{Cl}(\text{PR}_3)$ ⁺ in low yield; the final product in both reactions is the highly insoluble $[Rh([9]aneS₃)Cl₃]$. It is not clear whether slippage of the tridentate $[9]$ ane S_3 to a bidentate coordination to afford a 16-electron intermediate is of relevance here, although examples of bidentate $[9]$ ane S_3 have been reported for d⁸ complexes.^{3,9}

Current work is aimed at studying the reactions of these half-sandwich $[M([9]aneS_3)]^+$ complexes with electrophiles, nucleophiles, aromatics and alkanes.

We are very grateful to ICI Colours and Fine Chemicals Plc and the SERC for a CASE Award to M. A. H., Dr R. Peacock 256

(University of Glasgow) for Raman spectra, Dr Robin Perutz (University of **York)** for helpful discussions, the SERC for support, and Johnson Matthey Plc for generous loans of platinum metals.

Received, 6th September 1990; Corn. 0104076B

References

- 1 A. H. Janowicz and R. G. Bergman, *J. Am. Chem. Soc.*, 1983, 105,3926; J. K. Hoyano, A. D. McMaster and W. A. G. Graham, *J. Am. Chem. SOC.,* 1983,105,7190; W. D. Jones and F. J. Feher, *J. Am. Chem. Soc.*, 1986, 108, 4814; T. T. Wenzel and R. G. Bergman, *J. Am. Chem. Soc.*, 1986, 108, 4856; M. E. Thompson, **S.** M. Baxter, A. R. Bulls, B. J. Burger, M. C. Nolan, B. D. Santarsiero, W. P. Schaefer and J. E. Bercaw, *J. Am. Chem. Soc.,* 1987, 109, 203; W. D. Jones and F. J. Feher, *Acc. Chem. Res.,* 1989, 22, 91 and references therein.
- 2 C. K. Ghosh and W. A. G. Graham, *J. Am. Chem. Soc.*, 1987, 109, 4726; C. K. Ghosh and W. A. G. Graham, *J. Am. Chem. Soc.,* 1989, 111, 375.
- A. J. Blake and M. Schroder, *Adv. Znorg. Chem.,* 1990, 35, 1.
- T. Yoshida, T. Ueda, T. Adachi, K. Yamamoto and T. Higuchi, *J. Chem. Soc., Chem. Commun.,* 1985, 1137.
- 5 For example see: D. P. Riley and J. D. Oliver, *Inorg. Chem.*, 1983,22,3361; *G.* Reid, **A.** J. Blake, T. I. Hyde and **M.** Schroder, *J. Chem.* SOC., *Chem. Commun.,* 1988,1397. For examples of low valent Mo thioether crown complexes see: D. Sellmann and L. Zapf, *Angew. Chem.,* 1984, 96, 799: *Angew. Chem., Int. Ed. Engl.,* 1984, 23, 807; D. Sellmann and L. Zapf, *J. Organomet. Chem.,* 1985, 289, 57; **M.** T. Ashby and D. L. Lichtenberger, *Inorg. Chenz.,* 1985,24, 636; T. Yoshida, T. Adachi, T. Ueda, M. Watanabe, **M.** Kaminaka and T. Higuchi, *Angew. Chem.,* 1987,

99, 1182; *Angew. Chem., Znt. Ed. Engl,* 1987, **26,** 1171; T. Yoshida, T. Adachi, M. Kaminaka, T. Ueda and T. Higuchi, *J. Am. Chem.* SOC., 1988, 110, 4872; T. Yoshida, T. Adachi, T. Ueda, M. Kaminaka, N. Sasaki, T. Higuchi, T. Aoshima, I. Mega, *Y.* Mizobe and *Y.* Hidai, *Angew. Chem.,* 1989,101,1053; *Angew. Chem., Int. Ed. Engl.,* 1989, **28,** 1040; T. Adachi, N. Sasaki, T. Ueda, M. Kaminaka and T. Yoshida, J. Chem. Soc., Chem. *Commun.,* 1989, 1320.

- 6 J. Cosier and A. M. Glazer, J. *Appl. Crystallogr.,* 1986, 19, 105. 7 **A.** J. Blake, A. J. Holder, T. I. Hyde and M. Schroder, *J. Chem.* SOC., *Chem. Commun.,* 1987,987; **S.** C. Rawle, R. Yagbasan, K. Prout and **S.** R. Cooper, *J. Am. Chem. SOC.,* 1987,109,6181; A. J. **Blake,** R. 0. Gould, **A.** J. Holder, T. I. Hyde and M. Schroder, *J. Chem. SOC., Dalton Trans.,* 1988, 1861.
- 8 R. Cramer, *J. Am. Chem.* SOC., 1964, **86,** 217; 1972, 94, 5681; M. **A.** Arthurs and **S.** M. Nelson, *J. Coord. Chem.,* 1983, 13,29.
- 9 **A.** J. Blake, R. 0. Gould, A. J. Holder, T. I. Hyde, M. 0. Odulate, A. J. Lavery and M. Schröder, *J. Chem. Soc.*, *Chem. Commun.,* 1987, 118.
- 10 **W.** D. Jones and L. Dong, J. *Am. Chem. Soc.,* 1989,111,8722 and references therein.
- 11 DIFABS, program for empirical absorption correction, N. Walker and D. Stuart, *Acta Crystallogr., Sect. A,* 1983, 39, 158.
- 12 SHELX76, program for crystal structure refinement, G. M. Sheldrick, University of Cambridge. 1976.
- 13 **W.** Clegg, *Acta Crystallogr., Sect. A,* 1981, **37,** 22.
- 14 R. Cramer and L. J. Guggenberger, *J. Am. Chem. Soc.,* 1972,94, 3779.
- 15 D. T. Cromer and J. L. Mann, *Acta Crystallogr., Sect. A,* 1968,24, 321.
- 16 CALC, program for molecular geometry calculations, R. 0. Gould and P. Taylor, University of Edinburgh, 1985.
- 17 ORTEPII, interactive version, P. D. Mallinson and K. W. Muir, *J. Appl. Crystallogr.,* 1985, 18, 51.