Sequential Arene Coordination and C–F Insertion in the Reactions of $(\eta^5$ -Pentamethylcyclopentadienyl)rhodium Complexes with Hexafluorobenzene

William D. Jones,* Martin G. Partridge and Robin N. Perutz* b

^a Department of Chemistry, University of Rochester, Rochester, NY 14627, USA

^b Department of Chemistry, University of York, Heslington, York YO1 5DD, UK

Hexafluorobenzene reacts with $[(\eta^{5}-C_5Me_5)Rh(PMe_3)(C_2H_4)]$ in two sequential photochemical reactions to yield first the arene coordination product, $[(\eta^{5}-C_5Me_5)Rh(PMe_3)(\eta^{2}-C_6F_6)]$, and then the C–F insertion product, $[(\eta^{5}-C_5Me_5)Rh(PMe_3)(C_6F_5)F]$; chlorination of the latter generates $[(\eta^{5}-C_5Me_5)Rh(PMe_3)(C_6F_5)C]$, the structure of which has been determined crystallographically.

Reactive 16-electron transition-metal complexes interact with arenes to form either η^2 -arene complexes or metal (aryl)hydrides. $^{1.2}$ There is strong evidence that the insertion products are formed via prior η^2 -coordination. $^{1-4}$ We recently showed that the reaction could be arrested at the η^2 -coordination stage

by photochemical reaction of $[(C_5H_5)Rh(PMe_3)(C_2H_4)]$ with C_6F_6 rather than with benzene.⁴ Here we show that the reaction of the corresponding η^5 - C_5Me_5 complex results in C-F activation *via* prior coordination of the C₆F₆ ligand.

Photolysis of a solution of $[(C_5Me_5)Rh(PMe_3)(C_2H_4)]$ 1 in

 C_6F_6 ($\lambda > 285$ nm, 14 h) generates [(C_5Me_5)Rh(PMe₃)- $(\eta^2 - C_6 F_6)$] 2 as an isolable product readily characterized by multinuclear NMR spectroscopy.[†] Unlike its C₅H₅ analogue,⁴ prolonged photolysis (40 h) of the solution yields further products with ³¹P NMR spectra characteristic of Rh^{III} species,⁵ suggesting that the rhodium has inserted into a C-F bond (see below). Reaction of this solution with CHCl₃ simplifies the NMR spectra. In addition to 2 and [(C₅Me₅)Rh(PMe₃)Cl₂] derived principally from residual 1, there is one other Rh^{III} product with a ³¹P NMR resonance coupled to a single fluorine. This product was isolated as small orange crystals and demonstrated by X-ray crystallography to be $[(C_5Me_5)Rh(PMe_3)(C_6F_5)Cl]$ 3, thus establishing that a C-F bond has been cleaved (Fig. 1).‡ The structure shows a sterically crowded molecule with the C₆F₅ group lying in a plane at an angle of 20° to the plane of the C₅Me₅ ring. Comparison with the structure of $[(C_5H_5)(PMe_3)(\eta^2-C_6F_6)]$ shows that substantial reorganization of the C_6F_6 unit must have occurred prior to insertion into a C-F bond. The NMR spectra of 3 show that all fluorine nuclei are inequivalent even at 75 °C and the phosphorus is coupled to only one fluorine, presumably in an ortho position.† The barrier to internal rotation of the C₆F₅ unit about the Rh-C bond must, therefore, be very substantial.§

Examination of the products of prolonged photolysis of 1 with C_6F_6 before the addition of CHCl₃ showed the presence of $[(C_5Me_5)Rh(PMe_3)(C_6F_5)F]$ 4, $[(C_5Me_5)Rh(PMe_3)-(C_6F_5)Cl]$ 3 and a product tentatively identified as $[(C_5Me_5)Rh(PMe_3)F_2]$, in the ratio 8.3:1.2:1. The coordinated fluoride in 4 is evident from its ³¹P NMR spectrum (Fig. 2), which shows a further doublet splitting compared to 3, but this fluoride has not been located in the ¹⁹F NMR spectrum, probably because of overlap with other resonances.[†] Despite careful purification of C_6F_6 , we were unable to prevent

[(C₅Me₅)Rh(PMe₃)(η²-C₆F₆)] **2**, ¹H: δ 1.35 (d, 15H, J_{PH} 2.2, C₅Me₅) and 1.00 (dq, 9H, J_{PH} 9.8, $J_{RhH} = J_{FH} = 1.2$, PMe₃); ¹⁹F: δ – 147.4 (m, F², F²), -158.7 (m, F¹, F¹', *i.e.* fluorines bound to coordinated carbons) and -177.5 (m, F³, F³'); ³¹P{¹H}: δ -0.43 (dt, J_{RhP} 195, J_{FP} 67).

[(C_5Me_5)Rh(PMe_3)(C_6F_5)Cl] **3**, ¹H: δ 1.23 (d, 15H, J_{PH} 3.4, C_5Me_5) and 1.12 (dt, 9H, J_{PH} 10.8, $J_{RhH} = J_{FH} = 0.9$, PMe₃); ¹⁹F: δ -107.2 (m, F_{ortho}), -112.9 (m, F_{ortho}), -161.4 (m, F_{para}), -162.5 (m, F_{meta} and -164.7 (m, F_{meta}) [assignments by COSY at 292.4 MHz; see also M. I. Bruce, J. Chem. Soc. (A), 1968, 1459]; ³¹P{¹H}: δ 4.24 (dd, J_{RhP} 140, J_{FP} 22; m/z 516 (M⁺) and 481 (M-Cl)⁺.

and 0. M. 1. Bruce, J. Chem. Soc. (A), 1906, 1459, 5+{ (H}, 04.24 (dd, J_{RhP} 140, J_{FP} 22; m/z 516 (M⁺) and 481 (M-Cl)⁺. (C₅Me₅)Rh(PMe₃)(C₆F₅)F] **4**, ¹H: δ 1.10 (d, 15H, J_{PH} 2.3, C₅Me₅) and 0.91 (d, 9H, J_{PH} 11.2, PMe₃); ¹⁹F: δ -114.2 (m, F_{ortho}), -115.4 (m, F_{ortho}) -160.3 (t, J_{FF} 20.3, F_{para}), -161.6 (m, F_{meta}) and -163.9 (m, F_{meta}); ³¹P{¹H}: δ 6.75 (ddd, J_{RhP} 145, J_{FP} 39, $J_{F'P}$ 17).

‡ Crystal Data for: **3**, C₁₉H₂₄ClF₅PRh, M = 516.72, monoclinic, space group C2/c (No. 15), a = 14.129(4), b = 9.610(7), c = 30.320(5) Å, β = 94.88(5)°, V = 4102(5) Å³, Z = 8, $D_c = 1.67$ g cm⁻³, λ (Mo-K α) = 0.71069 Å, $\mu = 10.68$ cm⁻¹, F(000) = 2080, T = 198 K. Data were collected on an Enraf-Nonius CAD4 diffractometer for $2 < 20 < 50^\circ$. The structure was solved by heavy-atom methods and refined by leastsquares analysis to R = 0.036 and $R_w = 0.045$ for 2429 unique, observed absorption-corrected reflections [$I > 3\sigma(I)$]. The hydrogens were placed in idealized positions based on the difference Fourier map. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

§ We have also synthesized the C_5H_5 analogues of **3** and find that the C_6F_5 unit is freely rotating about the Rh–C bond on the NMR time-scale at ambient temperature. The free energy of activation for internal rotation of the Ph group of the related [(C_5Me_5)Rh(PMe₃) (Ph)Br] is 59 kJ mol⁻¹ (W. D. Jones and F. J. Feher, *Inorg. Chem.*, 1984, **23**, 2376).

Fig. 1 Molecular structure of $[(C_5Me_5)Rh(PMe_3)(C_6F_5)Cl]$ **3**. Principal bond distances and angles: Rh–C(11) 2.070(5), Rh–P 2.282(2), Rh–Cl 2.411(2) Å, C(11)–Rh–Cl 92.0(2), Cl–Rh–P 94.0(2)°, P–Rh–C(11) 84.6(1)°. The rhodium atom lies 0.409 Å from the C₆F₅ plane, the Rh–C(11) bond being at an angle of 12° to this plane. The dihedral angle between the C₆F₅ plane and the C₅Me₅ plane is 20.4°.

formation of 3, which probably arises from traces of chloro-fluorobenzenes.¶

The intermediacy of η^2 -C₆H₆ complexes in the pathway to benzene C–H activation has been contrasted with the pathway to ethene coordination and insertion.⁶ Ethene complexes may be converted photochemically to the (vinyl)hydride insertion products, but the latter regenerate ethene complexes thermally.^{6,7} Intermolecular reaction with ethene generates either (vinyl)hydride or ethene complexes in two independent pathways.⁶ The sequential growth of **2** and **4** implies that **4** is formed from **2**. The isolation of **2** gives a further opportunity

[†] Spectral data: NMR in C_6D_6 at 300 MHz for ¹H unless otherwise stated; ¹H spectra relative to C_6D_5H at δ 7.13, ³¹P spectra relative to external H₃PO₄, ¹⁹F spectra relative to C_6F_6 at δ -162.9; coupling constants in Hz.

[¶] When the sample is heated, 4 is converted to 3, implying that 4 scavenges chlorinated impurities in the C_6F_6 (nominal 99.9% and distilled prior to use).

1

Fig. 2 ³¹P{¹H} NMR spectrum in C₆F₆ solution of reaction mixture obtained by photolysis (40 h) of $[(C_5Me_5)Rh(PMe_3)(C_2H_4]$ in C₆F₆. Each of the signals is coupled to ¹⁰³Rh giving a doublet ($J \approx 200$ Hz for Rh¹ and ≈ 150 Hz for Rh¹¹). Additional couplings to two equivalent fluorines are observed for the η^2 -C₆F₆ complex **2**, to one *ortho* fluorine in the C₆F₅ complex **3**, and to one *ortho* fluorine and the fluorine bound to rhodium in complex **4**. A trace of $[(C_5Me_5)Rh(PMe_3)F_2]$ (marked *) is also detected as a doublet of triplets. Note that the spectrum was recorded unlocked in C₆F₆, whereas the data in the footnote refer to spectra recorded in C₆D₆.

to test whether the η^2 -C₆F₆ product is an intermediate *en route* to C-F activation. Accordingly, we purified **2** by sublimation (80 °C, 10^{-3} mbar), redissolved it in C₆F₆ and photolysed again. Once more the C-F insertion products were formed. It is also important to understand whether it is essential to carry these reactions out photochemically. [(C₅Me₅)Rh(PMe₃)] (Ph)H] **5** has been shown to be a good thermal source of [(C₅Me₅)Rh(PMe₃)].³ When **5** was heated in C₆F₆ to 65 °C, it reacted to form **2**, but no C-F insertion products were formed even on heating to 110 °C for 30 h. Thus, the C-F insertion step has only been achieved photochemically, and the relative stability of **2** and **4** remains unknown. The major reactions observed are summarised in Scheme 1.

Previous evidence has shown that intramolecular insertion into aryl C–F bonds is possible for complexes with ligands containing dangling C_6F_5 groups.^{8–10} There are also reports of fluorine abstraction from C_6F_6 by organolanthanides to form organolanthanide fluorides.^{11,12} The current experiments demonstrate the formation of Rh(η^2 -C₆F₆) and Rh(C₆F₅)F complexes in *two sequential photochemical steps*. Thus, the extra strength of the C-F bonds [D(F-C₆F₅) –D(H-C₆H₅) = 16 kJ mol⁻¹],¹³ coupled with substantial reorganization energy, create a barrier which is not overcome thermally even at 110 °C, but which may be surmounted photochemically. Although the intimate photochemical mechanism is unknown, this represents a graphic demonstration of the importance of precoordination of the arene. The ability of the C₅Me₅ complex **2**, but not its C₅H₅ analogue, to undergo C-F activation demonstrates the effect of the more electron-donating ligand in promoting insertion reactions. In the following Communication,¹⁴ we exploit this effect to manipulate the outcome of reactions with arene towards either η^2 -coordination or insertion, and put the ligand effect on a more quantitative basis.

We are grateful to Dr S. B. Duckett for experimental assistance and discussions. We acknowledge support from the US Department of Energy, from the SERC, The Royal Society, British Gas and the EC.

Received, 31st October 1990; Com. 0/04907G

References

- 1 W. D. Harman and H. Taube, J. Am. Chem. Soc., 1987, 109, 1883.
- 2 W. D. Jones and F. J. Feher, Acc. Chem. Res., 1989, 22, 91.
- 3 W. D. Jones and F. J. Feher, J. Am. Chem. Soc., 1984, 106, 1650.
- 4 S. T. Belt, S. B. Duckett, M. Helliwell and R. N. Perutz, J. Chem. Soc., Chem. Commun., 1989, 928.
- 5 B. Klingert and H. Werner, Chem. Ber., 1983, 116, 1450.
- 6 P. O. Stoutland and R. G. Bergman, J. Am. Chem. Soc., 1988, 110, 5732; M. V. Baker and L. D. Field, J. Am. Chem. Soc., 1986, 108, 7433, 7436.
- 7 D. M. Haddleton and R. N. Perutz, J. Chem. Soc., Chem. Commun., 1986, 1734; T. W. Bell, D. M. Haddleton, A. McCamley, M. G. Partridge, R. N. Perutz and H. Willner, J. Am. Chem. Soc., 1990, **112**, 9212.
- 8 T. G. Richmond, C. E. Osterberg and A. M. Arif, J. Am. Chem. Soc., 1987, 109, 8091.
- 9 N. M. Agh-Atabay, J. L. Davidson, G. Douglas and K. W. Muir, J. Chem. Soc., Chem. Commun., 1989, 549.
- 10 C. M. Anderson, R. J. Puddephatt, G. Ferguson and A. J. Lough, J. Chem. Soc., Chem. Commun., 1989, 1297.
- 11 C. J. Burns and R. A. Andersen, J. Chem. Soc., Chem. Commun., 1989, 136.
- 12 P. L. Watson, T. H. Tulip and I. Williams, *Organometallics*, 1990, 9, 1999.
- 13 CRC Handbook of Chemistry and Physics, 67th edn., CRC Press, Florida, 1986, p. F186.
- 14 S. T. Belt, L. Dong, S. B. Duckett, W. D. Jones, M. G. Partridge and R. N. Perutz, following communication.