Control of q*-Arene Coordination and C-H Bond Activation by Cyclopentadienyl Complexes of Rhodium

Simon T. Belt,^b Lingzhen Dong,^a Simon B. Duckett,^a William D. Jones,*^a Martin G. Partridge^b and **Robin N. Perutz^{b*}**

^aDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA

^bDepartment of Chemistry, University of York, Heslington, York YO1 5DD, UK

The selectivity for C-H bond activation *vs.* n^2 -coordination of arenes with $[(n^5-C_5R_5)Rh(PMe_3)]$ fragments (R = Me, H) is subject to control by the thermodynamic stability of the resulting η^2 -arene complex; the preference for η^2 -coordination increases in order of arene: benzene < 1,4-C₆H₄(CF₃)₂ < naphthalene, and in order of ancillary $ligand: C_5Me_5 < C_5H_5.$

It was proposed many years ago that arene insertion reactions were preceded by η^2 -arene coordination.^{1,2} Recently, we have found experimental evidence for such a mechanism in the reactions of η^5 -C₅H₅ and η^5 -C₅Me₅ rhodium complexes and have controlled the preference for η²-arene *vs*. (aryl)hydride

complexation by using fused polycyclic aromatic systems. $3-5$ Here, we quantify the thermodynamics and kinetics of these reactions and show how the outcome can be controlled further by substitution of the cyclopentadienyl ring.

The thermal reaction (60 $^{\circ}$ C) of [(C₅Me₅)Rh(PMe₃)(Ph)H]

Fig. 1 First-order plots of the time dependence of $\ln (I_{2a} + I_{3a})$ (sum) and $\ln (I_{2a} - I_{3a})$ (difference) for the intensities of the ³¹P resonances of **2a** and **3a** observed in the spin saturation transfer experiment at 312 K. **A** selective 180" pulse inverts the resonance of **3a** and is followed by a non-selective 90" pulse after a time **t.** The slope of the sum line corresponds to $-1/T_1$ while the difference line has a slope $-(1/T_1 +$ $2k_1$), where k_1 is the rate of exchange in Scheme 1 and T_1 is the mean relaxation time.

la with an excess of naphthalene produces a 2 : 1 mixture of $[(C_5Me_5)Rh(PMe_3)(\eta^2-naphthalene)]$ **2a** and $[(C_5Me_5)-\eta^2]$ Rh(PMe3) (2-naphthyl)H] **3a.4** We have now demonstrated that these species are in equilibrium (Scheme 1) by magnetization transfer between the phosphorus nuclei in the 31P NMR spectrum.? The rate of spin saturation transfer from $[(C_5Me_5)Rh(PMe_3)(2-naphthyl)H]$ **3a** to $[(C_5Me_5)Rh(PMe_3) (\eta^2$ -naphthalene)] **2a** in $[{}^2H_{12}]$ cyclohexane was quantitatively determined by selective inversion of the resonance for the former followed by a nonselective 90" pulse after a variable (0-10 s) delay. Plots of the sum and difference of the intensities of the resonances for the two complexes give lines whose slopes correspond to $-1/T_1$ and $-(1/T_1 + 2k_1)$, as shown in Fig. 1.6 The rate of this interconversion was determined over a range of 25 °C, giving activation parameters of ΔH^{\ddagger} = 70.6 \pm 3.3 kJ mol⁻¹ and ΔS^{\ddagger} = -35 \pm 12 J mol⁻¹ K⁻¹.

Equilibration of these two complexes with benzene by heating **la** in a 1.12 : 1 mixture of naphthalene and benzene in $[2H_{12}]$ cyclohexane solution at 50 °C leads to the formation of a 1.31 : 0.80 : 1.0 equilibrium mixture of **2a** : **3a** : **la.** These ratios correspond to free energy differences of 1.3 **kJ** mol-1 favouring the η^2 -complex over the naphthyl hydride, and 0.9 **kJ** mol-1 favouring the phenyl hydride over the naphthyl hydride. If the mixture of **2a** and **3a** is heated in benzene solution (51 $^{\circ}$ C), the rate of naphthalene loss can be measured from the rate of disappearance of **3a** $(k = 1.1 \times 10^{-5} \text{ s}^{-1})$.

The corresponding C_5H_5 complex $[(C_5H_5)Rh(PMe_3)(\eta^2$ naphthalene)] **2b** can also be prepared by thermolysis $(40^{\circ}C)$ of $[(C_5H_5)Rh(PMe_3)(Ph)H]$ **lb** in the presence of naphthalene. \ddagger In this case none of the C-H activation adduct $3\ddot{\textbf{b}}$ is observed. The lesser electron donating ability of the C_5H_5 ligand manifests itself as a stabilisation of the \overline{R} h¹ species.⁷

This electronic effect is also found in examination of reactions with hexafluoro-p-xylene. Irradiation of a solution of $[(C_5H_5)Rh(PMe_3)(C_2H_4)]$ in 1,4-C₆H₄(CF₃)₂ results in efficient loss of ethene, giving an equilibrium mixture of $[(C_5H_5)Rh(PMe_3){n^2-C_6H_4(CF_3)_2}]$ **4b** and $[(C_5H_5)Rh (PMe₃)$ {C₆H₃(CF₃)₂}H] **5b** (Scheme 2) .# The equilibrium varies slightly and reproducibly with changes in solvent,\$ and

 $[(C_5H_5)Rh(PMe_3)(\eta^2$ -naphthalene)] **2b**, ¹H (C_7D_{14}) : δ 7.63 (d, 1H, 17.6 , H^8 or H^5), 7.17 (m, $3H$, H^3 , H^5 or H^8 , H^7 or H^6), 7.05 (td, $1H$, J 7.6, 1.2, H6 or H7), 6.42 (d, lH, *J 8.8,* H4), 4.35 (d, 5H, JpH 0.7, C_5H_5 , 4.09 (td, 1H, J 6.6, 2.6, H¹), 3.49 (qd, 1H, J 5.6, 2.4, H²) and 1.29 (dd, 9H, J_{PH} 9.3, J_{RhH} 0.9, PMe₃), assignments by COSY (500 MHz); ³¹P (C₇D₁₄): δ 3.76 (d, J_{RhP} 199.5); ¹³C (C₇D₁₄): δ 137.52 (s), 128.45 **(s),** 127.87 **(s),** 126.68 **(s),** 123.61 **(s),** 119.59 **(s),** 88.59 (t, **Jpc** = $J_{\text{RhC}} = 3.3$, C₅H₅), 49.11 (dd, J_{PC} 14.1, J_{RhC} 1.8, η^2 -C), 47.52 (dd, J_{PC} 14.1, $J_{\text{R}bC}$ 1.8, η^2 -C), 20.09 (dd, J_{PC} 24.7, $J_{\text{R}bC}$ 1.4, $\hat{\text{P}}$ Me₃).

 C_6H_4 uncoordinated C-H), 4.45 (t, 5H, $J_{\text{PH}} = J_{\text{RhH}} = 0.8$, C_5H_5), 3.34 J_{PH} 9.3, J_{RhH} 1.0, PMe₃); ³¹P (C₆D₆): δ 1.26 (d, J_{RhP} 188.3, PMe₃); ¹⁹F $(\overrightarrow{C_6D_6})$: δ -64.82 (s, $\overrightarrow{CF_3})$; ¹³C ($\overrightarrow{C_6D_6}$): δ 89.31 (dd, J_{PC} 3.8, J_{RhC} 2.9, $[(C_5H_5)Rh(PMe_3)(\eta^2-C_6H_4(CF_3)_2)]$ **4b**, ¹H (C_6D_6) : δ 6.26 **(s, 2H**, (dd, 2H, $J_{\rm PH}$ 5.6, $J_{\rm RhH}$ 2.7, C_6H_4 coordinated C–H) and 0.59 (dd, 9H, C_5H_5), 43.30 (d, J_{PC} 13.5, C_6H_4 , coordinated carbon) and 18.58 (d, J_{PC} 28.1, PMe₃).

 $[(C_5Me_5)Rh(PMe_3){2,5\cdot C_6H_3(CF_3)_2}H]$ **5a**, ¹H (C_6D_6) : δ 8.06 **(s,** 1H, H⁶), 7.55 (d, 1H, J_{HH} 8.2, H³ or H⁴), 7.07 (d, 1H, J_{HH} 8.5, H⁴ or $H³$), 1.60 (dd, 15H, J_{PH} 2.3, J_{RhH} 0.9, $C₅Me₅$), 0.70 (dd, 9H, J_{PH} 9.9, J_{RhH} 1.1, PMe₃) and -12.91 (dd, 1H, J_{PH} 51.4, J_{RhH} 28.5, RhH); ³¹P -62.44 (s, CF₃); ¹³C (C₆D₆): δ 142.28 (t, $J_{\text{PC}} = J_{\text{RhC}} = 3.0$, C¹), 140.28 (C_6D_6) : δ 6.23 (d, *J*_{RhP} 146.7); ¹⁹F (C_6D_6): δ -59.52 (s, CF₃) and $(m, C⁶), 126.16$ (dt, \tilde{J} 6.3, 1.7, C³), 118.34 (q, \tilde{J} 4.1, C⁴), 98.19 (t, J_{PC} $= J_{\text{RhC}} = 3.3, C_5\text{Me}_5$, 18.13 (dd, J_{PC} 32.6, J_{RhC} 1.4, PMe₃) and 10.27 (s, C_5Me_5) .

 $[(\overline{C}_5H_5)Rh(PMe_3)\{2,5-C_6H_3(CF_3)_2\}H]$ **5b**, ¹H (C_6D_6) : δ 8.18 **(s,** 5H, J_{PH} 1.4, C_5H_5), 0.72 (dd, 9H, J_{PH} 10.5, J_{RhH} 1.6, PMe₃) and J_{RhP} 152, PMe₃); ¹⁹F (C₆D₆): δ -58.67 (br. s, CF₃) and -62.38 (s, J_{PC} 33, PMe₃). 1H, H⁶), 7.52 (d, 1H, J_{HH} 8.2, H³), 7.06 (d, 1H, J_{HH} 8.2, H⁴), 4.99 (d, -13.22 (dd, 1H, J_{PH} 45.5, J_{RhH} 26.3, RhH); ^{31}P (C₆D₆): δ 12.24 (d, $\overrightarrow{CF_3}$); ¹³C (C₆D₆): δ 88.25 (t, $J_{PC} = J_{Rnc} = 2.0$, C₅H₅) and 21.36 (d,

§ K_{eq} expressed as $[4b]/[5b]$ varies from 4.4 in C_6D_6 to 2.9 in CD₃CN solution and is temperature independent between -30 and $+50^{\circ}$ C, implying that ΔH is small.

t For the equilibrium in Scheme 1, $K_{eq} = [2a]/[3a]$. The temperature dependence of K_{eq} measured over a 26[°]C range in C₆D₁₂ gave values of $\Delta H^{\circ} = -17.3 \pm 0.1 \text{ kJ}$ mol⁻¹ and $\Delta S^{\circ} = -50.2 \pm 0.3 \text{ J}$ mol⁻¹ K⁻¹.

 \ddagger Spectral data: NMR at 300 MHz for ¹H in C₆D₆; ¹H spectra relative to \dot{C}_6D_5H at δ 7.13, or C_7D_{14} at δ 1.63, ¹³C spectra relative to C_6D_6 at δ 128.0 or C₇D₁₄ at δ 21.9, ³¹P spectra relative to external H₃PO₄, ¹⁹F spectra relative to external CFCl₃; coupling constants in Hz.

Fig, 2 Eyring plots of the temperature dependence of the rate constants for the decay of the transients observed on laser flash photolysis of $[(C_5H_5)Rh(PMe_3)(C_2H_4)]$ (\triangle) and $[(C_5Me_5)Rh(PMe_3) (C_2H_4)$] (\square) in benzene. The transients are assigned to the complexes $[(\eta^5-C_5R_5)Rh(PMe_3)(\eta^2-C_6H_6)]$, which decay to form $[(\eta^5-C_5R_5) \overrightarrow{Rh(PMe_3)}(C_6H_5)H$. The activation parameters are given in the text. The data for $[(\tilde{C}_5H_5)Rh(PMe_3)(C_2H_4)]$ are taken from ref. 5.

magnetisation transfer is seen between the C_5H_5 resonances for the two complexes at 60° C. For comparison, the C₅Me₅ analogues were prepared either by irradiation of $[(C_5Me_5)Rh(PMe_3)(C_2H_4)]$ or by thermolysis of **1a** in the presence of the fluorinated arene. Only the C-H activation product **5a** is seen with the C_5Me_5 ligand, \ddagger however, again indicating that the equilibrium between η^2 -arene and aryl hydride can be controlled by choice of the ring substituents.

The question of intermediacy of η^2 -arene coordination to $(C_5Me_5)Rh(PMe_3)$ *prior* to C-H bond oxidative addition can also be examined both in the reaction with naphthalene and with benzene. For naphthalene, η^2 -arene coordination was observed upon generation of $(C_5Me_5)Rh(PMe_3)$ in the presence of naphthalene at low temperature. The unsaturated metal intermediate was generated thermally by irradiation of $[(C_5Me_5)Rh(PMe_3)H_2]$ in $[{}^{2}H_{14}]$ methylcyclohexane to give the alkane activation adduct $[(C_5Me_5)Rh(PMe_3)(C_7D_{13})D]$, followed by warming of the latter in the presence of naphthalene to -30° C to liberate alkane. 31P NMR spectroscopy shows formation of **2a** (δ 0.72, d, $J_{\text{RhP}} = 203 \text{ Hz}$). Upon warming to 25 °C, a resonance for **3a** $(\delta$ 7.59, d, $J_{\text{RhP}} = 154$

Fig. 3 Free energy diagram for the interaction of benzene and naphthalene with $[(C_5Me_5)Rh(PMe_3)]$ at 323 K. Notice that the major difference between the naphthalene and benzene sides of the diagram lies in the energy of the η^2 -arene complexes. \P The data for the naphthalene-naphthyl hydride complexes are measured by NMR spectroscopy in $[{}^{2}\text{H}_{12}]$ cyclohexane. The data for the benzene-(phenyl)hydride complexes are measured in benzene or $[2H_8]$ tetrahydrofuran either by laser flash photolysis or by NMR spectroscopy. Earlier measurements showed that solvent effects were very small (ref. 3).

$$
[(C_{5}R_{5})Rh(PMe_{3})(Ph)H]
$$

\n
$$
\{ (C_{5}R_{5})Rh(PMe_{3})(\eta^{2}\text{-naphthalene}) \}
$$

\n
$$
[(C_{5}R_{5})Rh(PMe_{3})(2\text{-naphthyl})H]
$$

\n3
\na; R = Me
\nb; R = H

Hz) is observed to grow in as the compounds **2a** and **3a** equilibrate (Scheme 3).

In the case of reaction with benzene, $[(C_5Me_5)Rh(PMe_3) (C_2H_4)$ was employed for the formation of $(C_5Me_5)Rh(PMe_3)$ because it photo-dissociates ethene efficiently. Laser flash photolysis (308 nm) can be used to monitor its reaction with benzene, showing the instantaneous $(<1 \,\mu s)$ formation of an intermediate (370 nm) that decays with a lifetime of a few hundred microseconds. Irradiation of the analogous C_5H_5 complex $[(C_5H_5)Rh(PMe_3)(C_2H_4)]$ in benzene gives a similar transient *.5* These intermediates are assigned to the Rh^I η^2 -benzene complexes, which decay to give the corresponding phenyl hydride complexes. The rate at which the Rh^I η^2 -arene complex converts into the Rh^{III} oxidative addition complex is *ca.* 5 times faster for the more electron rich C_5Me_5 complex than for the C_5H_5 analogue. The temperature dependence of the rate of conversion allows the activation parameters to be extracted (Fig. 2). For the C_5Me_5 complex, $\Delta H^{\ddagger} = 46.6 \pm 1.3$ kJ mol⁻¹, $\Delta S^{\ddagger} = -20.4 \pm 4.6$ J mol⁻¹ K⁻¹. The parameters for the C_5Me_5 complex are similar,⁵ with $\Delta H^{\ddagger} = 48.0 \pm 1.8$ kJ mol⁻¹ and $\Delta S^{\ddagger} = -28.8 \pm 1.8$ 6.7 J mol⁻¹ K⁻¹.

The above information about the thermodynamic stability and kinetic lability of the C_5Me_5 η^2 -arene and aryl hydride complexes, combined with previous data,³ allows the complete comparison of the free energies for benzene and naphthalene activation (Fig. 3). The thermodynamic stability of the $(\eta^2$ -arene)/(aryl)hydride pairs may be compared relative to the $(C_5Me_5)Rh(PMe_3)$ fragment. The energies of the two (aryl)hydrides differ only marginally, but the η^2 -naphthalene complex lies about 28 kJ mol⁻¹ lower in energy than the η^2 -benzene complex. \P As a result, the equilibrium constant for conversion of η^2 -arene to (aryl)hydride complex is 0.5 for naphthalene but 3×10^4 for benzene at 50 °C. The kinetic barrier to conversion of (aryl)H to η^2 -arene complex is almost identical for naphthalene and benzene, and the transition states lie close in free energy. In contrast, the barrier for the reverse process is ≈ 30 kJ mol⁻¹ greater for naphthalene.

These studies demonstrate that *(i)* the equilibria between C-H activation and η^2 -coordination of arenes can be controlled by small changes in the ligation, since C_5Me_5 complexes shift equilibria towards Rh^{III} species in both hydrocarbon and fluorocarbon activation,⁸ *(ii)* η^2 -arene complex formation precedes C-H bond activation, and *(iii)* both the thermodynamic and kinetic effects of C_5H_5 and C_5Me_5 ancillary ligands can be quantified.

Acknowledgement is made to the US Department of Energy (DE-FG02-86ER13569), the Fulbright and Guggenheim Foundations, the Exxon Education Foundation, SERC, The Royal Society, British Gas and the EC for their support of this work.

Received 31st October 1990: Corn. Ol04931J

References

- 1 R. J. Hodges and J. L. Garnett, *J. Phys. Chem.,* 1968, 72, 1969.
- 2 G. W. Parshall, *Catalysis (London),* 1977, 1, *335.*
- 3 W. D. Jones and F. J. Feher, *Acc. Chem. Res.,* 1989,22,91; W. D. Jones and F. J. Feher, *J. Am. Chem. Soc.*, 1984, 106, 1650.
- 4 W. D. Jones and L. Dong, *J. Am. Chem. Soc.*, 1989, 111, 8722.
5 S. T. Belt. S. B. Duckett. M. Helliwell and R. N. Perutz. *J. Cher. 5* **S.** T. Belt, **S.** B. Duckett, **M.** Helliwell and R. N. Perutz, J. *Chem.* **SOC.,** *Chem. Commun.,* 1989, 928.
- 6 F. W. Dahlquist, K. J. Longmuir and R. B. Du Vernet, *J. Magn. Reson.,* 1975, 17, 406.
- **7** J. C. Green, *Struct. Bonding (Berfin),* 1981, **43,** 37.
- 8 W. D. Jones, **M.** G. Partridge and R. N. Perutz, preceding communication.

 \P The difference in free energy of the η^2 -benzene and η^2 -naphthalene complexes of 28 kJ mol⁻¹ is remarkably close to the upper limiting difference in loss of resonance energy on η^2 -coordination of benzene and naphthalene of 21 kJ mol⁻¹ (D.J. Brauer and C. Krüger, *Inorg. Chem.,* 1977, 16, 884).