Crown Thioether Complexes of p-Block Elements: Crystal and Molecular Structures of SbCl₃·9S3 (9S3 = 1,4,7-trithiacyclononane) and 2SbCl₃·18S6 (18S6 = 1,4,7,10,13,16-hexathiacyclooctadecane)

Gerald R. Willey, Miles T. Lakin, Mythili Ravindran and Nathaniel W. Alcock

Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK

The first crown thioether complexes of Sb^{III} and Bi^{III}, as representative p-block elements, have been isolated, *viz* SbCl₃·9S3 **1**, BiCl₃·9S3·0.5 MeCN, SbCl₃·1SS5, 2SbCl₃·18S6 **2** and BiCl₃·18S6;[†] X-ray crystal structure determinations of **1** and **2** establish full participation of ligand S-donor sites in metal ··· sulphur bonding in each case.

The ready ability of crown thioethers to bind metal ions provides simple and direct access to S-macrocyclic complexes of beguiling variety.¹ Most of the attention paid to these compounds has focused on transition metals (first-, secondand third-row) and the more familiar thioether ligands 9S3, 12S3, 14S4 and 18S6, which show a marked preference for the lower oxidation states of metal ions.^{1,2} In this communication we describe the synthesis and X-ray structural characterisation of novel group VB (15) crown thioether complexes incorporating SbCl₃ and BiCl₃ as exemplars of the p-block elements. Our interest in such compounds follows from recent studies of the complexation profile of MCl_3 (M = As, Sb, Bi) with the oxygen-containing crown ethers 12-crown-4, 15-crown-5 and 18-crown-6 where, with one exception, neutral adducts of the type MCl₃ crown based on a half-sandwich structure have been identified.³ We reasoned that observation of a similar pattern for the crown thioethers would allow a direct comparison of coordination parameters, interpretable in a simplistic approach as involving 'hard' (O) vs. 'soft' (S) ligands.

The complexes $SbCl_3 \cdot 9S3$ 1, $BiCl_3 \cdot 9S3 \cdot 0.5$ MeCN, $SbCl_3 \cdot 15S5$, $2SbCl_3 \cdot 18S6$ 2 and $BiCl_3 \cdot 18S6$ have been isolated and established by satisfactory IR and ¹H and ¹³C NMR

spectroscopic results and microanalytical data. In a typical preparation, dropwise addition of an acetonitrile solution of 9S3 (0.26 g, 1.46 mmol) to an ice-cold solution of SbCl₃ (0.33 g, 1.46 mmol) in acetonitrile maintained under an inert atmosphere of N_2 results in a clear solution. Slow concentration of this solution provided needle crystals of 1 (0.44 g, 74%) directly suitable for diffraction studies.‡ In the case of 2

‡ *Crystal data*: 1 C₆H₁₂S₃·SbCl₃, *M* = 408.5, orthorhombic, *P*2₁₂₁₂₁, *a* = 7.733(3), *b* = 10.241(4), *c* = 16.329(5) Å, *U* = 1293.1(6) Å³, *Z* = 4, *D*_c = 2.10 g cm⁻³, Mo-Kα radiation, λ = 0.71069 Å, μ(Mo-Kα) = 32.0 cm⁻¹, *T* = 290 K, *R* = 0.033 for 1181 unique observed [*II*₀(*I*) ≥ 2.0] reflections. **2** C₁₂H₂₄S₆·2SbCl₃, *M* = 816.9, triclinic, *P*I *a* = 8.291(4), *b* = 8.450(3), *c* = 11.587(6) Å α = 98.69(4), β = 102.29(4), γ = 115.86(3)°, *U* = 685.8(6) Å³, *Z* = 1, *D*_c = 1.98 g cm⁻³, Mo-Kα radiation, λ = 0.71069 Å, μ(Mo-Kα) = 32.0 cm⁻¹, *T* = 290 K, *R* = 0.038 for 2006 unique observed [*II*₀(*I*) ≥ 2.0] reflections.

Data collected with a Nicolet P2₁ four-circle diffractometer in ω -2 θ mode to maximum 2 θ of 50°, corrected for absorption (Gaussian method). Structure solution by Patterson methods. Anisotropic temperature factors were used for all non-H atoms. Hydrogen atoms were given fixed isotropic temperature factors, U = 0.07 Å², and inserted at calculated positions and not refined. For 1, the absolute structure of the individual crystal chosen was checked by refinement of a $\delta f''$ multiplier. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

⁺⁹S3 = 1,4,7-trithiacyclononane, 15S5 = 1,4,7,10,13-pentathiacyclopentadecane, 18S6 = 1,4,7,10,13,16-hexathiacyclooctadecane.

Fig. 1 Structure of SbCl₃·9S3 **1** showing the atom numbering scheme. Distances are: Sb(1)–Cl (range) 2.374(3)–2.451(3); Sb(1)–S(1), 3.409(3), Sb(1)–S(4), 3.396(3), Sb(1)–S(7), 3.156(3), Sb(1)–S(4a), 3.171(3) Å.

several recrystallisations from MeCN-CH₂Cl₂ at low temperature finally provided fine needle crystals.[‡] The ¹H and ¹³C NMR spectroscopic data indicate fluxional species in solution: each complex shows a characteristic singlet for the -CH₂-CH₂- backbone in the room temperature spectra (CD₃CN solution), *e.g.* for SbCl₃·15S5, δ 2.77 and δ 33.26 (δ 32.50, singlet, at 233 K) respectively. In the IR spectra broad bands characteristic of metal-halogen stretching modes dominate the far-IR region (400-200 cm⁻¹), *e.g.* for SbCl₃·15S5 v(Sb-Cl) 263, 291, 312 cm⁻¹.

In both complexes, 1 (Fig. 1) and 2 (Fig. 2), the Sb atoms are weakly coordinated to the sulphur atoms with Sb-S distances in the range 2.968(2)-3.460(3) Å. The Sb-Cl distances in 1 [2.374(3)-2.451(3)] and 2 [2.381(3)-2.471(2) Å] are similar to those of the pyramidal core unit in crystalline SbCl₃ itself [2.340(2) and 2.368(1) Å (2)].⁴ In 2 the antimony centres are six coordinate with each of the three crown sulphur atoms trans to a chlorine atom in an irregular fac-octahedral array. One of the trio of sulphur atoms is noticeably further away from the metal centre $[Sb(1)-S(7a) \ 3.460(3) \ \text{Å}]$ than the other two $[2.968(2), 3.061(3) \ \text{Å}]$. A similar [2 + 1] Sb–S bonding mode has been noted in SbCl₃(EtNH·CS·CS·NHEt)_{1.5}⁵ and $SbCl_3(S_2C_5H_{10})^6$ ($S_2C_5H_{10} = 1,4$ -dithiacycloheptane) suggesting that this is a stable geometry for Sb^{III}. In 1 the metal centres adopt a completely different stereochemistry and there is a chain structure; each SbCl₃ unit is irregularly bound to the three sulphur donors of one 9S3 crown [Sb-S 3.409(3), 3.396(3) and the much shorter 3.156(3) Å] and to a further sulphur from an adjacent ring viz, seven coordinate Sb^{III}

Fig. 2 Structure of $2SbCl_3$ ·18S6 2 showing the atom numbering scheme. Distances are: Sb(1)-Cl (range) 2.381(3)-2.471(2); Sb(1)-S(1), 2.968(2), Sb(1)-S(4), 3.061(3), Sb(1)-S(7a), 3.460(3) Å.

embraced by two crown rings. Remarkably the intermolecular distance Sb(1)–S(4a), 3.171(3) Å, which produces the chain structure in the crystal is one of the shortest (mean, Sb–S 3.283 Å). As a general comparison the Sb–S distances (above) are quite similar to the Sb–O distances in the analogous SbCl₃·crown ether complexes, *e.g.* SbCl₃·12-crown-4 (2.66–2.98 Å), SbCl₃·15-crown-5 (2.79–3.00 Å) and SbCl₃·18-crown-6·MeCN (2.99–3.40 Å) indicating a relative order of binding thiocrown > oxa-crown.

The various group VB-crown thioether complexes discussed above represent an important extension of the coordination chemistry of macrocyclic polythioethers into the p-block domain.

We are grateful to the SERC and the Cookson Group plc for financial support.

Received, 9th November 1990; Com. 0/05046F

References

- 1 S. R. Cooper and S. C. Rawle, Struct. Bonding, (Berlin) 1990, 72, 1.
- 2 A. J. Blake and M. Schröder, Adv. Inorg. Chem., 1990, 35, 1; M. Schröder, Pure Appl. Chem., 1988, 60, 517.
- 3 E. Hough, D. G. Nicholson and A. K. Vasudevan, J. Chem. Soc., Dalton Trans., 1987, 427; N. W. Alcock, M. Ravindran and G. R. Willey, J. Chem. Soc., Chem. Commun., 1989, 1063; M. G. B. Drew, D. G. Nicholson, I. Sylte and A. Vasudevan, Inorg. Chim. Acta, 1990, 171, 11; N. W. Alcock, M. Ravindran and G. R. Willey, Acta Crystallogr., Sect. A, 1990, 46, C-237; N. W. Alcock, M. Ravindran, S. M. Roe and G. R. Willey, Inorg. Chim. Acta, 1990, 167, 115.
- 4 A. Lipka, Acta Crystallogr., Sect. B, 1979, 35, 3020.
- 5 M. G. B. Drew, J. M. Kisenyi and G. R. Willey, J. Chem. Soc., Dalton Trans., 1982, 1729.
- 6 M. Schmidt, R. Bender and Ch. Burschka, Z. Anorg. Allg. Chem., 1979, 454, 160.