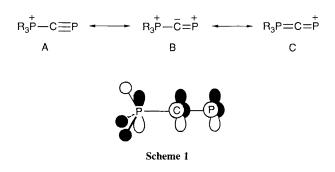
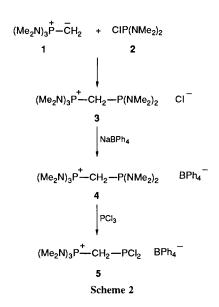
2-[Tris(dimethylamino)phosphonio]-1-phosphaethyne Tetraphenylborate, a Phosphonio-substituted Phosphaalkyne

Ulrich Fleischer,^a Hansjörg Grützmacher*^b and Uwe Krüger^b


- ^a Ruhr-Universität Bochum, Fakultät für Chemie, Lehrstuhl für Theoretische Chemie, Postfach 10 21 48, 4630 Bochum-Querenburg, Germany
- ^b Anorganisch Chemisches Institut der Universität, Im Neuenheimer Feld 270, 6900 Heidelberg, Germany

The reaction of [(dichlorophosphino)methyl]tris(dimethylamino)phosphonium tetraphenylborate **5** with an excess of 1,4-diazobicyclo[2.2.2]octane (DABCO) yields the new phosphonio-substituted phosphaalkyne, $[(Me_2N)_3P-C\equiv P)+BPh_4^-$ **6**, which is trapped by secondary amines, phenols and mesityl azide.

Recently we have reported on the synthesis and reactivity of 2-phosphonio-1-phosphaalkenes¹ (phosphavinylphosphonium salts) and a phosphonioiminophosphane.² In these compounds a phosphonium ion and a phosphenium ion formally compete for the electron density on the linking carbon atom. First results indicate an enhanced reactivity in [4+2] cycloadditions¹ and a crossing of the frontier orbitals²,³ due to the strong electron withdrawing capability of the phosphonio group.⁴ As a result of these studies we have become interested in the synthesis of a comparable functionalized phosphaalkyne.⁵


A qualitative picture of the bonding situation is outlined in Scheme 1. The π^* orbital of the phosphonio group interacts with the p orbitals at the bridging carbon atom (negative hyperconjugation^{4,6}) while these combine with the p orbitals at the low coordinated phosphorus atom in the usual manner to form $(p-p)\pi$ bonds. Consequently, the bonding in a phosphonio-substituted phosphaalkyne may be expressed by the resonance forms A, B and C and their contribution to the electronic ground state of the molecule should be reflected in the reactivity.

The preparation of the phosphonium salt 5 is straightforward† and finds parallels in the literature⁷ (Scheme 2). However, to our surprise the synthesis is restricted. It is impossible to change the amino group (*i.e.* NEt₂ or piperidine

† Preparation of 5: A solution of tris(dimethylamino)phosphoranylidenemethane 1 in toluene (200 ml) was prepared according to the sodium amide procedure¹⁴ from tris(dimethylamino)methylphosphonium bromide (12.9 g, 0.05 mol). This solution was slowly added to chlorobis(dimethylamino)phosphane (9.27 g, 0.06 mol) in toluene (50 ml) at $-78\,^{\circ}$ C. After warming to room temp. the reaction mixture was dried in vacuum at 60 $^{\circ}$ C and the resulting [bis(dimethylamino)phosphanylmethyl]tris(dimethylamino)phosphonium bromide 3 was used without further purification. It was dissolved in methylene chloride (200 ml) and sodium tetraphenylborate (17.1 g, 0.05 mol) was added. The suspension was stirred for about 0.5 h at room temp, and then filtered. To the slightly yellow solution PCl₃ (17.17 g, 0.125 mol) was added and the reaction mixture refluxed for 1 h. After several minutes 5 started to precipitate. After cooling to room temp. the white solid was collected by filtration and dried in vacuum (21.52 g, 0.036 mol), 72% yield, m.p. $166 \,^{\circ}\text{C}$; $^{1}\text{H NMR (CDCl}_{3})$: $\delta 2.73 \, (\text{d}, {}^{3}J_{\text{PH}} \, 10.5 \, \text{Hz}, 18)$ H, Me), 3.84 (dd, J_{PIII_H} 11.2 Hz, J_{PVH} 15.7 Hz, 2 H, CH_2), 6.83–7.37 (m, 20 H, Ar H); ${}^{31}P$ NMR (referenced to H_3PO_4) (CDCl₃): δ 52.2 (d, $^{2}J_{PP}$ 51.3 Hz, PNMe₂), 174.3 (d, $^{2}J_{PP}$ 51.3 Hz, PCl₂).

instead of NMe₂) or the counteranion (i.e. BF₄- or PF₆instead of BPh₄-). In every experiment an inseparable mixture of products has been obtained. Addition of an excess of DABCO or trimethylamine to 5 at -78 °C in methylene chloride, tetrahydrofuran or acetonitrile as solvent leads to a yellow suspension after warming up to room temperature. The ³¹P NMR spectrum (in CD₂Cl₂) shows only two doublets centred at δ 57.4 and 190.3 with a coupling constant of 197.5 Hz (δ 60.1 and 196.8 in CD₃CN). Unfortunately, it is impossible to isolate the phosphaalkyne 6 (Scheme 3). The compound aggregates to yet unknown oligomers. The assumed structure of 6 on the basis of spectroscopic data‡ is supported by IGLO calculations⁸ on $H_3P-C \equiv P + 7$. Geometry optimization of 7 at the SCF level\$ yields the following parameters: C≡P 1.511 Å; C-P 1.719 Å; P-H 1.394 Å; CPH 111.6°. The phosphorus carbon triple bond length in 7 is in good agreement with those calculated¹⁰ or observed¹¹ before. For this structure the ³¹P NMR chemical shifts are calculated to be δ 196 (C=P) and δ -120 (PH₃) by means of the IGLO method;¶ the value of the ¹³C NMR shift for the alkyne carbon is δ 105. Taking the solvent dependence of ³¹P NMR shifts into

- \ddagger 6: ^{1}H NMR (CD₂Cl₂): δ 2.55 (d, $^{3}J_{PH}$ 10.0 Hz, 18 H, Me), 6.78–7.35 (m, 20 H, Ar H); ^{13}C NMR (CD₂Cl₂): δ 36.6 (s, CH₃), 121.6, 125.4, 135.0 (s, o-C, m-C, p-C, Ar C, BPh₄ $^{-}$), 163.3 (q, $^{1}J_{BC}$ 49.2 Hz, ipso-C, BPh₄ $^{-}$), 163.3 (q, $^{1}J_{BC}$ 49.2 Hz, ipso-C, BPh₄ $^{-}$). ^{11}B NMR (referenced to BF₃ OEt₂) (CD₂Cl₂): δ –6.4 (s, BPh₄ $^{-}$).
- § Basis set: double zeta augmented with one set of d functions on phosphorus and carbon and one set of p functions on hydrogen. The program package described in ref. 9 was used.
- \P Basis set: triple zeta augmented with two sets of d functions on phosphorus, one set of d functions on carbon and one set of p functions on hydrogen; this basis set is often referred to as basis II in IGLO calculations.

5
$$\frac{NR_3}{6}$$
 $(Me_2N)_3\overset{+}{P}-C\equiv P$ BPh_4 $\frac{1.394}{7}$ $\frac{1.511}{7}$ $\frac{1.511}{$

account, the IGLO calculation is in excellent agreement with the experiment. All attempts to observe the alkyne carbon in a $^{13}\mathrm{C}$ NMR experiment failed. The $^{31}\mathrm{P}$ NMR shift of 6 exceeds that of Me₃Si–C=P, 12 which had the most low-field shifted $^{31}\mathrm{P}$ resonance of the known phosphaalkynes (by δ 100) and might be explained by the contribution of resonance forms B and C to the electronic ground state.

Chemical proof for the assigned structure of 6 is obtained by simple trapping reactions (Scheme 3). Addition of diisopropylamine to 6 yields quantitatively, based on NMR data, the phosphavinyl phosphonium salt 8 (31P NMR: δ 55.1 [d, ${}^2J_{PP}$ 139.3 Hz, $P(NMe_2)_3$, 298.2 (d, ${}^2J_{PP}$ 139.3 Hz, $PNPr_2^i$). Note that phosphaalkynes do not usually react with amines and the observation of 1,2-addition indicates the activation of the phosphorus-carbon triple bond by the tris(dimethylamino)phosphonium group. When 2,6-di-(tert-butyl)phenol is added, the mono adduct $\hat{9}$ can be observed by NMR spectroscopy $\{31P \text{ NMR}: \delta 43.9 \text{ [d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3\}, 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3\}, 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3\}, 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3\}, 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3\}, 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ 102.6 Hz, } P(\text{NMe}_2)_3], 361.2 \text{ (d, } ^2J_{PP} \text{ (d, } ^2$ 102.64 Hz, POR). However, it is unstable and decomposes to a mixture of unidentified products. The sterically less demanding phenols 2-tert-butyl-4-methylphenol and 2,6-diisopropylphenol add twice and the phosphonium salts 10a {31P NMR (CD₂Cl₂): δ 54.17 [d, ${}^2J_{PP}$ 55.0 Hz, P(NMe₂)₃], 157.4 [d, ${}^2J_{PP}$ 55.0 Hz, $P(OR)_2$ and 10b {31P NMR (CD_2Cl_2): δ 53.7 [d, $^{2}J_{PP}$ 24.4 Hz, P(NMe₂)₃], 179.4 [d, $^{2}J_{PP}$ 24.4 Hz, P(OR)₂]) are isolated. Finally, regioselective [2 + 3] cycloaddition with mesityl azide yields the phosphonio-substituted 1,2,3,4-triazaphosphole 11, which is characterized by NMR spectroscopy. In general cycloadditions with azides serve as experimental proof for phosphaalkynes. 13

 \parallel 11: ^{1}H NMR (CDCl₃): δ 1.85 (s, 6 H, o-Me-mesityl), 2.26 (s, 3 H, p-Me-mesityl), 2.45 (d, $^{3}J_{\text{PH}}$ 10.5 Hz, NCH₃), 6.71–7.44 (m, 22 H, Ar H); ^{31}P NMR (CDCl₃): δ 42.1 (d, $^{2}J_{\text{PP}}$ 66 Hz, PNMe₂), 218.8 (d, $^{2}J_{\text{PP}}$ 66 Hz, Primg); ^{13}C NMR (CDCl₃): δ 17.2 (d, $^{4}J_{\text{PC}}$ 1.15 Hz, o-Me-mesityl), 20.6 (s, p-Me-mesityl), 36.4 (dd, $^{3}J_{\text{PC}}$ 4.2 Hz, $^{4}J_{\text{PC}}$ 2.5 Hz, NCH₃), 121.3 (s, CH-BPh₄⁻), 125.0 (s, CH-BPh₄⁻), 129.1 (s, m-CH-mesityl), 133.4 (d, $^{2}J_{\text{PC}}$ 7.06 Hz, ipso-C-mesityl), 133.8 (d, $^{3}J_{\text{PC}}$ 2.3 Hz, o-C-mesityl), 140.2 (s, p-C-mesityl), 163.3 (q, $^{1}J_{\text{BC}}$ 49.2 Hz, ipso-C, BPh₄⁻), 164.6 (dd, $^{1}J_{\text{PVC}}$ 99.2 Hz, $^{1}J_{\text{PIII}}$ 50.4 Hz, Cphosphole).

This work was supported by Prof. W. Sundermeyer, Prof. G. Huttner, Prof. W. Kutzelnigg, the Fonds der Chemischen Industrie and the Deutschen Forschungsgemeinschaft. We thank the Bayer AG for a generous gift of chemicals. The calculations were done on the CYBER 205 of the Rechenzentrum der Ruhr-Universität Bochum.

Received, 29th October 1990; Com. 0/04854B

References

- H. Grützmacher and H. Pritzkow, Angew. Chem., 1989, 101, 768;
 Angew. Chem., Int. Ed. Engl., 1989, 28, 740.
- 2 H. Grützmacher, H. Pritzkow and M. Stephan, *Tetahedron*, 1990, 46, 2381.
- 3 W. W. Schoeller and E. Niecke, J. Chem. Soc., Chem. Commun., 1982, 569.
- 4 H. Bock, U. Lechner-Knoblauch and P. Hänel, *Chem. Ber.*, 1986, 119, 3749.
- 5 M. Regitz, Chem. Rev., 1990, 90, 191; M. Regitz and P. Binger, Angew. Chem., 1988, 100, 1541; Angew. Chem., Int. Ed. Engl., 1988, 27, 1484.
- 6 P. v. R. Schleyer and A. J. Kos, Tetrahedron, 1983, 39, 1141.
- K. Issleib and R. Lindner, Justus Liebigs Ann. Chem., 1966, 699,
 H.-J. Kleiner and H. Neumaier, in Methoden der Organischen Chemie, ed. M. Regitz, Houben-Weyl-Müller, Thieme, Stuttgart, New York, 1982, vol. E1, pp. 249 and 283.
- 8 M. Schindler and W. Kutzelnigg, *J. Chem. Phys.*, 1982, **76**, 1919; W. Kutzelnigg, U. Fleischer and M. Schindler, *NMR Basic Princ. Prog.*, in the press.
- 9 R. Ahlrichs, H.-J. Böhm, C. Ehrhardt, P. Scharf, H. Schiffer, H. Lischka and M. Schindler, J. Comp. Chem., 1985, 6, 200.
- M. T. Nguyen, Z. Naturforsch., Teil A, 1983, 39, 169; M. T. Nguyen, M. A. Ginn and A. F. Hegarty, Inorg. Chem., 1986, 25, 2185.
- 11 A. M. Arif, A. R. Barron, A. H. Cowley and S. W. Hall, J. Chem. Soc., Chem. Commun., 1988, 171.
- 12 R. Appel and A. Westerhaus, Tetrahedron Lett., 1981, 22, 2159.
- 13 W. Rösch, U. Vogelbacher, T. Allsbach and M. Regitz, J. Organomet. Chem., 1986, 306, 39.
- 14 H. J. Bestmann, Angew. Chem., 1965, 77, 609; Angew. Chem., Int. Ed. Engl., 1965, 4, 583.