A New Class of Fused 1,4-Diazepines: Synthesis of Substituted 8,8*a*-Dihydrofuro[2,3-*b*][1,4]diazepin-2-ones

José Barluenga,* ^a Miguel Tomás, ^a Alfredo Ballesteros, ^a Jian-She Kong, ^a Santiago García Granda^b and Enrique Pérez-Carreño^b

^a Departamento de Química Organometálica and ^b Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33071-Oviedo, Spain

The novel furo[2,3-*b*][1,4]diazepines **7** have been synthesized in two steps from acetylenedicarboxylic acid esters and 4-amino-1-azabutadienes **1** via their 1,3,2-diazasiline derivatives **2** and the crystal structure of **7a** has been determined.

Recently we have shown that 4-amino-1-azabutadienes are valuable building blocks for the synthesis of five- and six-membered nitrogen-containing heterocycles as well as open-chain compounds.¹ In addition, we have found that the reactivity of these azadienes dramatically changes when they are first transformed into 1,2-dihydro-1,3,2-diazasilines.^{2.3} Thus, we have reported^{2a} that azadienes **1** ($R^2 = Ph$; $R^3 = Me$) furnish 1,5-diazocine derivatives **4** by reaction of their diazasiline derivatives **2** with esters of acetylenedicarboxylic acid (Scheme 1, pathway **A**). The reaction seems to involve formation of the silicon-containing heterocycle **3**, from which intramolecular rearrangement following pathway **A** (1,4-attack) takes place. We realized that rearrangement involving 1,5-attack of the enamine nitrogen on another alkoxycarbonyl

Scheme 1 Reagents and conditions: i, Cl_2SiPh_2 , toluene– Et_3N , 25 °C, 12 h; ii, R^5O_2C – $C\equiv C$ – CO_2R^5 , toluene, 60 °C, 24 h; iii, CF_3CO_2H , CH_2Cl_2 , 25 °C, 12 h

group, which would give seven-membered heterocycles, could be feasible; in fact, the nature of the transition state in the rearrangement step leading to 4 might be determined primarily from steric interactions since the intermediate 3 is highly substituted.

We report here that seven-membered heterocycles are selectively formed starting from appropriate 4-amino-1-azabutadienes 1. Thus, azadienes 1, in which both C^{α} - and C^{β} -enamine carbon atoms are unsubstituted ($R^2 = R^3 = H$), were treated with dichlorodiphenylsilane in toluene at room temperature to produce the diazasilines 2, which were not isolated; heating 2 with acetylenedicarboxylic acid esters at 60 °C allowed the silicon substituted fused heterocycles 6 to be identified (IR, ¹H and ¹³C NMR, and mass spectra); without purification, compounds 6 were subjected to protodesilylation with trifluoroacetic acid in dichloromethane (25 °C; 12 h) to yield the furodiazepinones 7† in 40–75% overall yield from 1 (Scheme 1, Table 1).

Table 1 Furo[2,3-b][1,4]diazepines 7 and pyridines 8 and 9

Compound ^{a,b}	R ⁴	R ⁵	Yield (%)	M.p. (<i>t</i> /°C) ^c
7a	p-MeC ₆ H ₄	Me	75	145–147
7b	Ph	Me	73	144-146
7c	p-MeOC ₆ H ₄	Me	72	164166
7d	p-MeOC ₆ H ₄	Et	66	114-116
7e	4-Pyridyl	Me	40	164-166
8	p-MeC ₆ H ₄	Me	90	137-139
9	p-MeC ₆ H ₄	Me	98	141–142

 a R¹ = cyclo-C₆H₁₁. ^b All new compounds reported here gave satisfactory elemental analytical figures. ^c Recrystallized from hexane–chloroform.

 $R^1 = cyclo-C_6H_{11}, R^4 = p-MeC_6H_4, R^5 = Me$

Scheme 2 Reagents and conditions: i, toluene, 120 °C, 8 h; ii, 1 mol dm⁻³ HCl, tetrahydrofuran, 25 °C, 3 h

† Spectroscopic data for compound 7e: IR (KBr) v_{max} 1760 (CO) cm⁻¹; ¹H NMR (CDCl₃; 300 MHz): δ 1.1–2.2 (m, 10H), 3.2 (s, 3H), 4.1 (m, 1H), 5.7 (d, 1H, J 9.7 Hz), 5.73 (s, 1H), 6.9 (d, 1H, J 9.7 Hz), 7.7 (d, 2H, J 6.1 Hz) and 8.7 (d, 2H, J 6.1 Hz); ¹³C NMR (CDCl₃; 75 MHz): δ 167.96 (s), 163.29 (s), 160.37 (s), 150.00 (d), 146.23 (s), 141.40 (d), 121.56 (d), 107.77 (s), 102.09 (d), 94.55 (d), 60.67 (q), 49.31 (d), 34.07 (t), 33.28 (t), 25.87 (t), 25.38 (t) and 24.93 (t); *m*/z 339 (M⁺).

Fig. 1 PLUTO plot of the structure of 7a, showing the atomic numbering

Compounds 7 gave the expected spectral data and showed satisfactory microanalysis; an X-ray structure of 7a confirmed the assignment (Fig. 1).[‡]

In the formation of the heterocycles 7, rearrangement of the intermediate 3 must involve nucleophilic attack of the enamine nitrogen on the carbonyl carbon attached to the C^{β}-vinylsilane carbon (1,5-attack) to give the intermediate 5; subsequent lactone formation and silicon group removal would account for the process (Scheme 1, pathway **B**).

The different reaction course leading to either eight- 4 or seven- 7 membered rings can be accounted for by steric

‡ Crystal data for 7a, $M_r = 352.43$, triclinic, $P\overline{1}$, a = 7.350(2), b =15.033(3), c = 17.86(1) Å, $\alpha = 91.06(9), \beta = 101.8(1), \gamma = 104.13(2)^{\circ},$ V = 1868(2) Å³, Z = 4, $D_c = 1.25$ mg m⁻³, μ (Mo-K α) = 0.79 cm⁻¹, T= 293 K, yellowish crystal, 0.49 \times 0.26 \times 0.20 mm size, Mo-K α radiation ($\lambda = 0.71073$ Å), graphite monochromator. 11 144 reflections measured on a Enraf-Nonius CAD4 (ω -2 θ scan technique), range $0 < \theta < 30$ and $-10 \le h \le 10, -21 \le k \le 21, 0 \le l \le 25; 10\,820$ unique reflections ($R_{int} = 0.020$, averaging some doubly measured reflections) and 5413 observed $[I > 3\sigma(I)]$. Semiempirical and empirical absorption corrections were applied. The structure was solved by direct methods (SHELXS 86) and anisotropically refined (SHELX 76) to a final R = 0.076 (262 parameters and unit weights). Maximum shift/error = 0.33, maximum residual electron density $0.46 \text{ e} \text{ A}^{-3}$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

interactions between the substituents R^1 and R^2 in the intermediate 3. Molecular models show that structure 3 having $R^2 = Ph$ (see Scheme 1) is rigid, the rearrangement being dominated by the more stable conformer (*via* A), whereas in the case of $R^2 = H$ the conformational equilibrium is much less hindered allowing the rearrangement to involve the ester function placed four atoms away (*via* B).

Finally, fused diazepines 7 display unusual thermal behaviour; thus, heating a deoxygenated solution of 7a in a sealed tube (toluene, 120 °C; 8 h) led to C(2)–C(6) carbon–carbon bond formation to give the highly functionalized pyridine 8 (90%, m.p. 137–139 °C), which in turn was quantitatively hydrolysed (1 mol dm⁻³ HCl, tetrahydrofuran, 25 °C, 3 h) to the formylpyridine 9 (m.p. 141–142 °C) (Scheme 2, Table 1).

Compounds 7, which can be regarded as 1,4-diazepines with a fused butenolide ring, are members of a class of heterocycle which has not been previously described, to the best of our knowledge. 1,4-Benzodiazepines have been studied intensively, but recent attention has concentrated on the synthesis of analogues having heterocycles in place of the benzene ring because of their biological and pharmacological properties.⁴ Our approach starts with the easily available 1-azadienes and provides an efficient, short entry to furo[2,3-b][1,4]diazepines.

This work was supported in part by the Dirección General de Investigación Científica y Técnica (DGICYT, PB86-0254). J.-S. K. thanks the Ministerio de Educación y Ciencia for a fellowship.

Received, 9th November 1990; Com. 0/05050D

References

- 1 J. Barluenga, Bull. Soc. Chim. Belg., 1988, 97, 545.
- 2 (a) J. Barluenga, M. Tomás, A. Ballesteros, V. Gotor, C. Krüger and Y.-H. Tsay, Angew. Chem., Int. Ed. Engl., 1986, 25, 181; (b) J. Barluenga, M. Tomás, A. Ballesteros and V. Gotor, Synthesis, 1987, 489.
- 3 For the use of diazasilolidines in synthesis of macrocyclic systems, see E. Schwartz, H. E. Gottlieb, F. Frolow and A. Shanzer, *J. Org. Chem.*, 1985, **50**, 5469.
- 4 J. T. Sharp in Comprehensive Heterocyclic Chemistry, ed. W. Lwowski, vol. 7, Pergamon Press, Oxford 1984, p. 608; R. Pauwels, K. Andries, J. Desmyter, D. Schols, M. J. Kukla, H. J. Breslin, A. Raeymaeckers, J. V. Gelder, R. Woestenborghs, J. Heykants, K. Schellekens, M. A. C. Janssen, E. D. Clercq and P. A. J. Janssen, Nature, 1990, 343, 470; D. E. Thurston, G. B. Jones and M. E. Davis, J. Chem. Soc., Chem. Commun., 1990, 874.