Gas Phase Reactions.^{1,2} FPS₂ and FPS

Hans Bock,*^a Matthias Kremer,^a Bahman Solouki,^a Michael Binnewiesb and Manfred Meisel^c

a Institute of Inorganic Chemistry, University of Frankfurt, Niederurseler Hang, W-6000 Frankfurt/Main 50, Germany *^bInstitute of Inorganic Chemistry, University of Freiburg, Albertstr. 2* **7,** *W-7800 Freiburg, Germany ^cAcademy of Science, Rudower Chaussee 5, 0- 7 799 Berlin, Germany*

The pyridinium betaine H₅C₅N.FPS₂ dissociates at 770 K in the gas phase yielding the novel σ^{3} ₆-phosphorane FPS₂, which at 900 K splits off S₂ to give FPS as substantiated by comparison with the photoelectron spectrum from its generation by Br_2 FPS debromination on silver wool above 800 K.

Small molecules, which violate the outdated 'non-double bond-rule' for main-group elements of third or higher periods, continue to pop up from appropriately designed measurement techniques as, for instance, photoelectron spectroscopy in flowing gases.3 Those containing both phosphorus and sulfur,^{4,5} in particular provide textbook examples such as CI-P=S⁶ and CI-P(=S)₂.7 Here we present a missing link The short-pathway thermolysis of the betaine **1** was carried between the two classes of compounds, $\sigma^2\lambda^3$ -phosphanes and $\sigma^3 \lambda^5$ -phosphoranes (Scheme 1). $\sigma^3 \lambda^5$ -phosphoranes (Scheme 1). $\sigma^3 \lambda^5$ -phosphoranes (Scheme 1).

out in an internal electron-bombardment oven of a Leybold Heraeus UPG 200 photoelectron spectrometer³ by evaporating the solid at 470 K into the reaction zone, the temperature of which was increased in steps of SO K. The photoelectron **Scheme 1**

spectra recorded (Fig. 1) at S70K closely resemble that of pyridine (Fig. 1: shaded) and at 770 K show additional bands, *e.g.* at 10.0, 10.5, 11.33 and 13.45 eV. Digital subtraction^{1.2} of a prerecorded pyridine spectrum unmasks the ionization

Fig. 1 He I PE spectra of H₅C₅N-FPS₂ (evaporated at 470 K) at 570 and 770 K, of pyridine (prerecorded, shaded), after its digital subtraction together with Koopmans' assignment for $FPS₂$, and continued for 900 K with repeated subtraction $-H_5C_5N$ ' yielding that of the gaseous mxiture of *S28* and FPS. The latter is also recorded after debromination of Br_2FPS on silver wool above 800 K² and assigned by another Koopmans' correlation with MNDO eigenvalues *(cf.* text).

pattern of the $\sigma^3 \lambda^5$ -phosphorane FPS₂ as proven by a radical cation state comparison with the analogous four-centre-24 valence electron molecules C_1PO_2 and C_1PS_2 (Fig. 2).⁷ The assignments are supported by Koopmans' correlations, $E_{i,n}$ ^V $= -\epsilon_1$ ^{MNDO},[†] with MNDO eigenvalues from geometry-optimized semiempirical SCF calculations (cf. refs. 2, 7 and Fig. 1). According to the corresponding orbital diagrams for FPS_2 (Fig. 3), in its five radical cation states of lowest energy, the positive charge is predominantly delocalized over the S and P centres.

On further heating of the evaporated H_5C_5N + FPS₂ mixture in the flow system at 10^{-4} mbar pressure to 900 K, the ionization pattern (Fig. 1) changes again: for instance, bands at 10.11 and 11.33 eV (FPS₂) have vanished and new ones at

Fig. 2 Comparison of the ionization energies (E_i) for the radical cation states of C_1PO_2 , $CIPS_2$ and FPS_2

12 (1a₂) -9.68 eV **10** (5a₁) -10.76 eV 8 (3b₂) -13.46 eV 11 (4b₂) -10.38 ev 9 (2b₁) -12.98 eV

Fig. 3 Orbital diagrams for FPS₂

Fig. 4 Comparison of the ionization energies (E_i) for the radical cation states of $CI₂Si$ (ref. 9), ClPO (ref. 6), ClPCH₂ (ref. 10), ClPS (ref. 6) and FPS

9.41 and 13.24 eV (S_2^8) and at 10.47 and 11.77 eV appear. Renewed digital subtraction of the prerecorded pyridine PE spectrum (Fig. 1: shaded) yields the He I PE bands of another gaseous mixture, in which the component S_2 is immediately recognized by three of its characteristic low-energy peaks at

^{?-} RSC Journals follow IUPAC recommendations with regard to abbreviations. Elsewhere in the literature ionisation energy is often denoted as IE.

9 (7a') -10.51 eV 8 (2a'') -11.46 eV 7 (6a') -12.0 eV 6 (5a') -15.73 eV

Fig. *5* Orbital diagrams for FPS

Fig. 6 MNDO calculated charge distributions for FPS and FPS₂

9.41, 13.24 and 14.62 eV .⁸ The remaining ones of, at first sight, unknown origin are readily assigned to FPS by comparison with unpublished spectra2 of the product of $Br₂FPS$ debromination on silver wool^{4,5} above 850 K (Fig. 1). Further confirmation is provided by another Koopmans' correlation with MNDO eigenvalues (Fig. 1) and, above all, by the radical cation state comparison with some of the iso(va1ence)electronic triatomic molecules generated under analogous measurement conditions (Fig. 4). $6,9,10$

FPS differs in structural details from the homologous FNS $(d_{FS} 165 \text{ pm}, d_{SN} 145 \text{ pm}$ and \angle _{FNS} 117°),¹¹ but should be also bent according to both Walsh rules^{12,13} and a geometryoptimized MNDO calculation² (d_{PF} 154 pm, d_{PS} 180 pm and *LFps* 111"). The MNDO orbital diagrams (Fig. *5)* suggest for the FPS*+ ground state as well *(cf.* Fig. 3) a largely sulfur lone pair character. Predominant P and S contributions are predicted for the three M^+ states following, $\pi_{PS}(a'')$ and to $\sigma_{\text{FPS}}(a')$, of which the latter are separated by more than 4 eV (Fig. 1). Altogether, the MNDO calculated charge distributions for FPS as well as for $FPS₂$ (Fig. 6) suggest that both molecules should be only moderately polarized, presumably owing to the well-known perfluoro effect,¹⁴ *i.e.* the π back donation from negatively charged F centres.

With regard to the unexpected gas phase formation of a FPS $+ S_2$ mixture from FPS₂ (Fig. 1), dimers (RPS₂)₂ containing a four-membered ring are known and can be monomerized thermally.^{2,7} On the other hand, N_2S_2 fragments above 900 K

into both 2 SN and $N_2 + S_2$, an observation for which energy hypersurface calculations suggest a distorted tetrahedral intermediate. 1s

Received, 22nd August 1991; Corn. 1104415J

References

- 1 For Part 81 of the series Gas Phase Reactions, see: H. Bock, M. Kremer, W. Dolg and H.-W. Preuss; *Angew. Chem.,* 1991, 30, 1200; *Angew. Chem., Int. Ed. Engl.,* 1991, 30, 1186.
- 2 Part of the Ph.D. thesis of M. Kremer, University of Frankfurt, 1991.
- 3 For a more recent review, see: H. Bock, B. Solouki, **S.** Aygen, M. Bankmann, O. Breuer, R. Dammel, J. Dörr, M. Haun, T. Hirabayashi, D. Jaculi, J. Mintzer, **S.** Mohmand, H. Miiller, P. Rosmus, B. Roth, J. Wittmann and H. P. Wolf, *J. Mol. Struct.,* 1983, **31,** 173 and references cited therein.
- 4 *Cf. e.g.* H. Bock, *Phosphorus, Sulfur, Silicon Rel. Elements,* 1990, $49/50, 3.$
- 5 M. Binnewies and H. Schnockel, *Chern. Rev.,* 1990, 90, 321.
- 6 M. Binnewies, B. Solouki, H. Bock, R. Becherer and R. Ahlrichs, *Angew. Chem.,* 1984, 96, 704; *Angew. Chem., Int. Ed. Engl.,* 1984, 23, 731.
- 7 M. Meisel, H. Bock, B. Solouki and M. Kremer, *Angew. Chem.,* 1989, **101,** 1378; *Angew. Chem., Int. Ed. Engl.,* 1989, **28,** 1373.
- 8 J. M. Dyke, L. Golob, N. Jonathan and **A.** Morris, *J. Chem. SOC., Faraday Trans. 2,* 1975,71, 1026; J. Berkowkitz, *J. Chem. Phys.* , 1975, 62, 4074.
- 9 H. Bock, B. Solouki and G. Maier, *Angew. Chem.,* 1985,97,205; *Angew. Chem., Int. Ed. Engl.,* 1985, 24, 205.
- 10 H. Bock and M. Bankmann, *Angew. Chem.,* 1986,98,287; 1989, **101,** 950; *Angew. Chern., int. Ed. Engl.,* 1986, 25, 265; 1989, 28, 911.
- 11 R. L. Cool and W. H. Kirchhoff, *J. Chem. Phys.,* 1967,47,4521.
- 12 P. Rosmus, P. Dacre, B. Solouki and H. Bock, *Theor. Chim.*
- *Acta,* 1974, 35, 129 and references cited therein.
- 13 A. D. Walsh, *J. Chem. SOC.,* 1953,2260; see also R. Buenker and **S.** D. Peyerimhoff, *Chem. Rev.,* 1974, 74, 127.
- 14 *Cf.* H. Bock and K. Wittel, *Photoelectron Spectra of Organic Halogen Compounds,* in *The Chemistry of Functional Groups,* Vol. C/Hal, ed. **S.** Patai and **Z.** Rappoport, Wiley, Chichester, 1983, **pp.** 1499-1603.
- 15 H. Bock, B. Solouki and H. W. Roesky, *Inorg. Chem.,* 1985,24, 4425.