Reactivity of $[\langle Y(C_5Me_5)(OC_6H_3But_2)(\mu-H)\rangle_2]$ with Terminal Alkenes and Alkynes: **A Model for the First Insertion Step in Alkene Polymerization**

Colin J. Schaverien

Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research 6. V.), Postbus 3003, 1003 AA Amsterdam, The Netherlands

Terminal alkenes H₂C=CHR (R = H, Me, Buⁿ) react with $\{Y(C_5Me_5)(OAr)(\mu-H)\}_2$ 1 to give the μ -n-alkyl species $~trans$ [{Y(C₅Me₅)(OAr)}₂(µ-H)(µ-CH₂CH₂R)] (R = H 2, Me 3, Buⁿ 4), respectively; HC≡CSiMe₃ reacts to give ${\rm [Y(C_5Me_5)(OAr)\}_{2}(\mu$ -H $)(\mu$ -C=CSiMe₃)] 5.

We have recently reported¹ the synthesis of the dimeric bridging hydride complex [{Y(CsMe5)(OAr)(p-H)}2] **1** (OAr $= O\ddot{\text{C}}_6\text{H}_3\text{B}^{\text{ut}_2}$. Its reactivity was of interest to determine the influence of replacing a C_5Me_5 ligand in $[\{(C_5Me_5)_2MH\}_2]$ (M $= Y^2$,^{2a} La,^{2b} Ce,^{2c} Nd,^{2b} Sm,^{2b,2d} Lu^{2b,2e}) with the electronically different alkoxide ligand. In this contribution, initial reactivity studies of **1** with terminal alkenes and alkynes are described. The novel μ -hydrido μ -alkyl and μ -hydrido μ -acetylide species *trans*- $[\{Y(C_5Me_5)(OAr)\}_2(\mu-H)(\mu-X)]$ serve as models for the first insertion step in alkene polymerization.

Reaction of 1 with C_2H_4 (1 bar, 25 °C) leads to the rapid formation of polyethene (m.p. 127.6 $^{\circ}$ C), and the u-ethyl species $trans\left[{Y(C_5Me_5)(OAr)} \right]_2(\mu-H)(\mu-CH_2Me)$ **2** (Scheme 1). Only **2** is observed by 1H NMR monitoring; the characteristic triplet of a μ -CH₂CH₂R {R = $(CH_2CH_2)_n$ -CH2Me} propagating chain does not replace the quartet of μ -CH₂Me (δ -0.08), despite the energy difference between p-ethyl2, y-n-butyl, p-n-hexyl4 *(vide infra) etc.* being likely to be very small. Thus, **1** is converted relatively slowly (from **p-H** intensities of 1 and 2; $<< 1$ bar C_2H_4 , C_6D_6 , 1 h) to 2 only,

indicating that whilst initiation is slow, propagation is relatively fast. This is the opposite of that usually observed in alkene polymerization. Complex **2** does not react with propene.

Compound **1** reacts with propene (5 bar, 16 h, 25 "C) to give $trans\{ {Y(C_5Me_5)(OAr)}_2(\mu-\text{H})(\mu-\text{CH}_2\text{CH}_2\text{Me})\}$ 3⁺ selectively. In contrast to the reactivity observed with the bispentamethylcyclopentadienyl species $[{(C_5Me_5)_2MH}]_2$ ², the putative allyl $[Y(C_5Me_5)(OAr)(\eta^3-CH_2CHCH_2)]$ is not formed. Reaction of $[\{Y(C_5Me_5)(OAr)(\mu-D)\}_2]$ {prepared from $[Y(C_5Me_5)(OAr)CH(SiMe_3)_2]^1$ and D_2 } with propene yields, as expected, only $\left[\{Y(C_5Me_5)(OAr)\}\right]_2(\mu-D)(\mu-\nu)$ CH_2CHDMe) (by ¹H and ¹³C NMR), confirming the non-reversibility of insertion. In all reactions of **1** with terminal alkenes there is no evidence for μ -isoalkyl species. Complex **3** does not react further with propene.

To demonstrate that longer chain bridged alkyl species are not inherently unstable with respect to β -H elimination, the μ -n-hexyl species $\{\{Y(C_5Me_5)(OAr)\}\}\mu$ -CH₂CH₂CH₂-CH₂ ${\rm Y}(C_5Me_5)(OAr)\}_{2}(\mu$ -CH₂CH₂CH₂-CH2-CH2Me)] **4** was prepared straightforwardly by reaction of **1** with an excess of hex-l-ene.\$ Complex **1** does not react with an excess of *trans*-hex-3-ene (70 °C, C_6D_6 , 16 h); insertion and/or isomerization to **4** do not occur.

Bridged alkyl species $2-4$ are stable to β -H elimination. Heating at 75 °C in C₆D₆ (sealed NMR tube) does not give 1 and the free alkene as expected, but instead yields $[Y(C_5Me_5)(OAr)_2]$ as the only identifiable yttrium product.

In the $1H NMR$ spectra the μ -H resonance in 2-4 appears as a triplet at δ 5.30–5.35, $J_{\text{YH}} = 39-41$ Hz. In the ¹H NMR spectrum for **3** at $25^{\circ}C$, the μ -propyl group displays resonances at δ 1.32 (Me), 0.94 (C_B2) and 0.02 (C_aH₂). At -80 °C the C_{α}H₂ resonance splits into two broad resonances at δ 0.76 and -0.70 . The μ -alkyls **2–4** show diastereotopic α -CH₂ resonances implying idealised C_2 , rather than C_{2v} , geometry, indicating a mutually trans-geometry for the attendant ligands. Activation parameters for exchange of the two diastereotopic $C_{\alpha}H_2$ hydrogens were calculated based on coalescence for a simple two-site exchange model, ΔG^{\ddagger} (at -23 °C) = 46.4 \pm 2 kJ mol⁻¹. This is similar to that calculated for $[{Et_2Si(C_5H_4)(C_5Me_4)M}_2(\mu-H)(\mu-CH_2CH_2R)]$ (M = Y, Lu).³ As previously proposed,³ diastereotopic $C_{\alpha}H_2$ equilibration is *not* achieved by *u*-propyl group rotation about the *u*-H, μ -C_{α} axis in 3; instead inversion at a planar μ -C_{α} has to be invoked. The carbons of the u-propyl group in 3 are temperature invariant in the 13C NMR spectrum and resonate at† δ 48.5 (C_{α}H₂), 23.4 (C_βH₂) and 21.0 (Me). The magnitudes of J_{YC} and J_{CH} are characteristic of bent μ -alkyl groups.3.4

A different reaction pathway is observed between **1** and terminal alkynes. Instead of insertion into a Y-H bond, protonolysis occurs with Me₃SiC=CH with loss of H₂ (¹H

Scheme 1 [Y] = $Y(C_5Me_5)(OAr)$; PE = polyethene

NMR) to give the *µ*-acetylide $\left[\{Y(C_5Me_5)(OAr)\}\right]_2(\mu-H)(\mu-C\equiv$ CSiMe₃)] **5**, with the *µ*-acetylide moiety resonating at δ (¹³C) 165.7 (t, $J_{\text{YC}} = 25.0 \text{ Hz}$, μ -C_α) and 136.1 (t, $J_{\text{YC}} = 2.7 \text{ Hz}$, C_β). Although the geometry of *5* cannot be determined unequivocally by NMR spectroscopy, we assume the C_5Me_5 ligands to be mutually *trans* as in 2-4.

In compounds $2-5$ the second μ -H is significantly kinetically deactivated. Similar trends have been reported.3 For example, **5** which contains a (presumably inert) μ-acetylide, as well as a p-hydride, does not react with ethene. Neither does **5** react with excess of Me₃SiC \equiv CH (5 equiv., 25 °C, 16 h) to give [Y(CsMes)(OAr)C=CSiMe3] **6,** although this can be prepared from $[Y(\overline{C_5Me_5})(\overline{OAr})\{\overline{CH(SiMe_3)}_2\}]^1$ and $HC\equiv CSiMe_3$. Complex **5** is cleaved by tetrahydrofuran (thf) only in the presence of excess of $\text{Me}_3\text{SiC} \equiv \text{CH}$ to give the monomeric terminal acetylide species $[Y(\text{C}_5\text{Me}_5)(\text{OAr})(\text{C})]$ terminal acetylide species $[Y(C_5Me_5)(OAr)(C\equiv$ $CSiMe_3$)(thf)₂] 7. The analogous $[Y(C_5Me_5)_2(C=$ $CSiMe₃$ $(OEt₂)$] has been prepared.^{2*a*} Complex 3 reacts with

i- **NMR** data for **3**: ¹H NMR (C₆D₆, 25 °C): δ 7.35 (br 't', 4H, H_m), 6.85 (t, 2H, H_p), 5.30 (t, 1H, J_{YH} = 39.5 Hz, μ -H), 1.97 (s, 30H, C₅Me₅), 1.65 (br, s, 18H, CMe₃), 1.56 (br s, 18H, CMe₃), 1.32 (t, 3H, *J* 7.3 Hz, Me), 0.94 (br, 2H, C_{β} H₂) and 0.02 (t, 2H, *J* 8.5 Hz, C_{α} H₂); ¹³C NMR (C_6D_6 , 10 °C): δ 160.5 (virtual t, $J_{\text{YC}} = 2.3$ Hz, C_{ipso}), 137.6 and 136.1 (s, C_o), 127.4 (d, C_m), 125.0 (d, C_m), 119.9 (s, C₅Me₅), 117.8 (d, C_p), 48.5 (tt, *J*_{YC} = 19.7 Hz, *J*_{CH} = 105 Hz, C_aH₂), 35.6 and 35.3 (s, CMe₃), 33.9 and 31.5 (q, CMe₃), 23.4 (t, *J*_{YC} = 2.0 Hz, C_βH₂), 21.0 (Me) and 11.9 (q, C_5Me_5). **8**, ¹H NMR (C_6D_6 , 25 °C: δ 7.35 (d, 4H, H_m), 6.85 (t, 2H, H_p), 1.90 (s, 30H, C₅Me₅), 1.55 (s, 36H, CMe) and -0.076 (t, 6H, $J_{\text{YH}} = 3.8$ Hz, μ -Me); ¹³C NMR (C₆D₆-CD₂Cl₂, 25 $\mathcal{E}^{\text{max}}(k, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.0$ 117.6 **(d, C_p), 35.9 (s, CMe**₃), 33.0 **(q, CMe**₃), 30.92 **(qt, J_{CH}** = 104 Hz, $J_{\text{YC}} = 28$ Hz, μ -Me) and 12.4 (q, C_5Me_5). Satisfactory elemental analyses were obtained for compounds *2-9.*

The steric hindrance afforded by the ancillary ligands in **1** is demonstrated by the lack of reaction between **1** and an excess of styrene or $Me_3SiCH=CH_2$ (> 10 equiv., C_6D_6 , 25 °C); furthermore, 1 reacts surprisingly slowly (days) with an excess of ArOH (3 equiv.) to afford $[Y(C_5Me_5)(OAr)_2]$.

 $Me₃SiC=CH$, not to give the μ -propyl μ -acetylide $[\{Y(C_5Me_5)(OAr)\}_2(\mu\text{-CH}_2CH_2Me)(\mu\text{-C}\equiv\text{CSiMe}_3)],$ but affords 5 , the more basic μ -alkyl clearly being more susceptible to protonolysis than μ -H.

The synthesis and α -alkene polymerization activity of $\left[\{ (n^5-C_5Me_4)Sim_2(n^1-NCMe_3)Sc(PMe_3) \} _2(\mu-H)_2 \right],^5$ $\left[\{ (n^5-C_5Me_3)Sim_2(n^1-NCMe_3)Sc\} _4(\mu-C_5)~\right]$ and C_5Me_4)SiMe₂(η ¹-NCMe₃)Sc}₂(μ -CH₂CH₂Me)₂]⁵ $[{Y(C_5H_4R)_2(\mu-R')}_2]$ (R = H, Me, SiMe₃; R' = Me, Buⁿ)⁶ were taken as evidence to support polymerization *via* an $M(\mu-R')$ ₂M intermediate. To determine if this was a possibility here, the bis μ -Me species $[\{Y(C_5Me_5)(OAr)(\mu-Me)\}_2]$ 8⁺ was prepared from $[Y(C_5Me_5)(OAr)_2]$ and MeLi (1 equiv.) (Scheme 2). It reacts very slowly with ethene and not at all with an excess of propene *(ca.* 10 equiv., *25 "C,* after several days). A similar lack of reactivity for $[\Ssc(C_5Me_5)(O C_6H_3Bu_2-3.5)Me_2[$ was attributed to the presence of robust, apparently bridging alkoxides. We find this highly unlikely. In **8,** it is the *influence'* of the *terminal* alkoxides that results in the signficantly kinetically deactivated μ -Me group.

Although only μ -hydrido μ -alkyl species have been observed and isolated, and it was therefore tempting to propose that propagation occurs *via* dimeric $[\{Y(C_5Me_5)(OAr)\}_2(\mu H$)(μ -CH₂R)], a low concentration of an (undetected) monomer {probably $[Y(C_5Me_5)(OAr)X]$ $(X = H \text{ or } CH_2R)$ } being the active catalyst seems probable. We have shown that in $[Y(\mu\text{-}alkyl)(\mu\text{-}H)Y]$ 2–4 and $[Y(\mu\text{-}Me)_2Y]$ 8, both the μ -alkyl and μ -hydride are significantly kinetically deactivated with respect to their terminal counterparts. The absence of a binuclear chelating ligand system3 suggests that reversible dissociation to active monomer(s) may be facile, though the *Received, 18th July 1991; Com. 1f03675H*

References

- 1 C. J. Schaverien, J. H. G. Frijns, H. J. Heeres, J. R. van den Hende, J. H. Teuben and A. L. Spek, *J. Chem. Soc., Chem. Commun.,* 1991, 642.
- 2 *(a)* K. H. den Haan, Y. Wielstra and J. H. Teuben, *Organometdlics,* 1987, **6,** 2053; *(h)* G. Jeske, H. Lauke, H. Mauermann, P. N. Swepston, H. Schumann and T. J. Marks, *J. Am. Chem. Soc.*, 1985, 107, 8091; (c) H. J. Heeres, J. Renkema, **M.** Booij, A. Meetsma and J. H. Teuben, *Ovganometallics,* 1988,7,2495; *(d)* W. J. Evans, I. Bloom, W. E. Hunter and J. L. Atwood, *J. Am. Chem. Soc.*, 1981,103,6507; *(e)* P. L. Watson, *J. Chem. Soc., Chem. Commun.,* 1983, 276.
- 3 D. Stern, M. Sabat and T. J. Marks, *J. Am. Chem. Soc.*, 1990, 112, 9558.
- 4 (a) M. A. Busch, R. Harlow and P. L. Watson, *Inorg. Chim. Acta*, 1987, **140,** 15: *(h)* F. Ozawa, J. W. Park, P. B. Mackenzie, W. P. Schaefer, L. M. Henling and R. H. Grubbs, *J. Am. Chem. Soc.,* 1989, 111, 1319.
- 5 P. J. Shapiro, E. Bunel, W. P. Schaefer and J. E. Bercaw, *Organometalfics,* 1990, **9,** 867: W. E. Piers, P. J. Shapiro, E. E. Bunel and J. E. Bercaw, *Synlett.,* 1990, 74.
- 6 J. Holton, M. F. Lappert, D. G. H. Ballard, R. Pearce, J. L. Atwood and W. E. Hunter, *J. Chem. Soc., Dalton Trans.*, 1979, 54; D. G. H. Ballard, A. Courtis, J. Holton, J. McMeeking and R. Pearce, *J. Chem. Soc., Chem. Commun.*, 1978, 994.
- 7 W. E. Piers. E. E. Bunel and J. E. Bercaw, *J. Organomer. Chem.,* 1991, 407, 51.