## Reactivity of $[{Y(C_5Me_5)(OC_6H_3But_2)(\mu-H)}_2]$ with Terminal Alkenes and Alkynes: A Model for the First Insertion Step in Alkene Polymerization

## Colin J. Schaverien

Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B. V.), Postbus 3003, 1003 AA Amsterdam, The Netherlands

Terminal alkenes H<sub>2</sub>C=CHR (R = H, Me, Bu<sup>n</sup>) react with  $[{Y(C_5Me_5)(OAr)(\mu-H)}_2]$  1 to give the  $\mu$ -n-alkyl species *trans*- $[{Y(C_5Me_5)(OAr)}_2(\mu-H)(\mu-CH_2CH_2R)]$  (R = H 2, Me 3, Bu<sup>n</sup> 4), respectively; HC=CSiMe<sub>3</sub> reacts to give  $[{Y(C_5Me_5)(OAr)}_2(\mu-H)(\mu-C=CSiMe_3)]$  5.

We have recently reported<sup>1</sup> the synthesis of the dimeric bridging hydride complex [{Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)( $\mu$ -H)}<sub>2</sub>] 1 (OAr = OC<sub>6</sub>H<sub>3</sub>Bu<sup>1</sup><sub>2</sub>). Its reactivity was of interest to determine the influence of replacing a C<sub>5</sub>Me<sub>5</sub> ligand in [{(C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>MH}<sub>2</sub>] (M = Y,<sup>2a</sup> La,<sup>2b</sup> Ce,<sup>2c</sup> Nd,<sup>2b</sup> Sm,<sup>2b,2d</sup> Lu<sup>2b,2e</sup>) with the electronically different alkoxide ligand. In this contribution, initial reactivity studies of 1 with terminal alkenes and alkynes are described. The novel  $\mu$ -hydrido  $\mu$ -alkyl and  $\mu$ -hydrido  $\mu$ -acetylide species *trans*-[{Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)}<sub>2</sub>( $\mu$ -H)( $\mu$ -X)] serve as models for the first insertion step in alkene polymerization. Reaction of 1 with  $C_2H_4$  (1 bar, 25 °C) leads to the rapid formation of polyethene (m.p. 127.6 °C), and the  $\mu$ -ethyl species *trans*-[{Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)}<sub>2</sub>( $\mu$ -H)( $\mu$ -CH<sub>2</sub>Me)] 2 (Scheme 1). Only 2 is observed by <sup>1</sup>H NMR monitoring; the characteristic triplet of a  $\mu$ -CH<sub>2</sub>CH<sub>2</sub>R {R = (CH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub>-CH<sub>2</sub>Me} propagating chain does not replace the quartet of  $\mu$ -CH<sub>2</sub>Me ( $\delta$  -0.08), despite the energy difference between  $\mu$ -ethyl 2,  $\mu$ -n-butyl,  $\mu$ -n-hexyl 4 (*vide infra*) *etc.* being likely to be very small. Thus, 1 is converted relatively slowly (from  $\mu$ -H intensities of 1 and 2; << 1 bar C<sub>2</sub>H<sub>4</sub>, C<sub>6</sub>D<sub>6</sub>, 1 h) to 2 only, indicating that whilst initiation is slow, propagation is relatively fast. This is the opposite of that usually observed in alkene polymerization. Complex 2 does not react with propene.

Compound 1 reacts with propene (5 bar, 16 h, 25 °C) to give trans-[{ $Y(C_5Me_5)(OAr)$ }<sub>2</sub>( $\mu$ -H)( $\mu$ -CH<sub>2</sub>CH<sub>2</sub>Me)] 3<sup>†</sup> selectively. In contrast to the reactivity observed with the bispentamethylcyclopentadienyl species [{ $(C_5Me_5)_2MH$ }<sub>2</sub>],<sup>2</sup> the putative allyl [ $Y(C_5Me_5)(OAr)(\eta^3$ -CH<sub>2</sub>CHCH<sub>2</sub>)] is not formed. Reaction of [{ $Y(C_5Me_5)(OAr)(\mu$ -D)}<sub>2</sub>] {prepared from [ $Y(C_5Me_5)(OAr)CH(SiMe_3)_2$ ]<sup>1</sup> and D<sub>2</sub>} with propene yields, as expected, only [{ $Y(C_5Me_5)(OAr)$ }<sub>2</sub>( $\mu$ -D)( $\mu$ -CH<sub>2</sub>CHDMe)] (by <sup>1</sup>H and <sup>13</sup>C NMR), confirming the non-reversibility of insertion. In all reactions of 1 with terminal alkenes there is no evidence for  $\mu$ -isoalkyl species. Complex 3 does not react further with propene.

To demonstrate that longer chain bridged alkyl species are not inherently unstable with respect to  $\beta$ -H elimination, the  $\mu$ -n-hexyl species [{Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)}<sub>2</sub>( $\mu$ -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>Me)] **4** was prepared straightforwardly by reaction of **1** with an excess of hex-1-ene.‡ Complex **1** does not react with an excess of *trans*-hex-3-ene (70 °C, C<sub>6</sub>D<sub>6</sub>, 16 h); insertion and/or isomerization to **4** do not occur.

Bridged alkyl species 2–4 are stable to  $\beta$ -H elimination. Heating at 75 °C in C<sub>6</sub>D<sub>6</sub> (sealed NMR tube) does not give 1 and the free alkene as expected, but instead yields [Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)<sub>2</sub>] as the only identifiable yttrium product.

In the <sup>1</sup>H NMR spectra the  $\mu$ -H resonance in 2–4 appears as a triplet at  $\delta$  5.30–5.35,  $J_{YH} = 39-41$  Hz. In the <sup>1</sup>H NMR spectrum for **3** at 25 °C,<sup>†</sup> the  $\mu$ -propyl group displays resonances at  $\delta$  1.32 (Me), 0.94 (C<sub>β</sub>2) and 0.02 (C<sub>α</sub>H<sub>2</sub>). At -80 °C the C<sub>a</sub>H<sub>2</sub> resonance splits into two broad resonances at  $\delta$  0.76 and -0.70. The  $\mu$ -alkyls **2-4** show diastereotopic  $\alpha$ -CH<sub>2</sub> resonances implying idealised  $C_2$ , rather than  $C_{2\nu}$ , geometry, indicating a mutually trans-geometry for the attendant ligands. Activation parameters for exchange of the two diastereotopic  $C_{\alpha}H_2$  hydrogens were calculated based on coalescence for a simple two-site exchange model,  $\Delta G^{\ddagger}$  (at -23 °C) = 46.4  $\pm$  2 kJ mol<sup>-1</sup>. This is similar to that calculated for  $[\{Et_2Si(C_5H_4)(C_5Me_4)M\}_2(\mu-H)(\mu-CH_2CH_2R)]$  (M = Y, Lu).<sup>3</sup> As previously proposed,<sup>3</sup> diastereotopic  $C_{\alpha}H_2$  equilibration is *not* achieved by  $\mu$ -propyl group rotation about the  $\mu$ -H,  $\mu$ -C<sub> $\alpha$ </sub> axis in 3; instead inversion at a planar  $\mu$ -C<sub> $\alpha$ </sub> has to be invoked. The carbons of the  $\mu$ -propyl group in 3 are temperature invariant in the <sup>13</sup>C NMR spectrum and resonate at†  $\delta$  48.5 (C\_{\alpha}H\_2), 23.4 (C\_{\beta}H\_2) and 21.0 (Me). The magnitudes of  $J_{\rm YC}$  and  $J_{\rm CH}$  are characteristic of bent  $\mu$ -alkyl groups.3,4

A different reaction pathway is observed between 1 and terminal alkynes. Instead of insertion into a Y-H bond, protonolysis occurs with Me<sub>3</sub>SiC=CH with loss of H<sub>2</sub> (<sup>1</sup>H

<sup>‡</sup> The steric hindrance afforded by the ancillary ligands in 1 is demonstrated by the lack of reaction between 1 and an excess of styrene or Me<sub>3</sub>SiCH=CH<sub>2</sub> (> 10 equiv., C<sub>6</sub>D<sub>6</sub>, 25 °C); furthermore, 1 reacts surprisingly slowly (days) with an excess of ArOH (3 equiv.) to afford [Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)<sub>2</sub>].



Scheme 1  $[Y] = Y(C_5Me_5)(OAr); PE = polyethene$ 



NMR) to give the  $\mu$ -acetylide [{Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)}<sub>2</sub>( $\mu$ -H)( $\mu$ -C= CSiMe<sub>3</sub>)] **5**, with the  $\mu$ -acetylide moiety resonating at  $\delta$  (<sup>13</sup>C) 165.7 (t,  $J_{YC} = 25.0$  Hz,  $\mu$ -C<sub> $\alpha$ </sub>) and 136.1 (t,  $J_{YC} = 2.7$  Hz, C<sub> $\beta$ </sub>). Although the geometry of **5** cannot be determined unequivocally by NMR spectroscopy, we assume the C<sub>5</sub>Me<sub>5</sub> ligands to be mutually *trans* as in **2–4**.

In compounds 2–5 the second  $\mu$ -H is significantly kinetically deactivated. Similar trends have been reported.<sup>3</sup> For example, 5 which contains a (presumably inert)  $\mu$ -acetylide, as well as a µ-hydride, does not react with ethene. Neither does 5 react with excess of Me<sub>3</sub>SiC≡CH (5 equiv., 25 °C, 16 h) to give [Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)C=CSiMe<sub>3</sub>] 6, although this can be prepared from  $[Y(C_5Me_5)(OAr){CH(SiMe_3)_2}]^1$  and  $HC \equiv CSiMe_3$ . Complex 5 is cleaved by tetrahydrofuran (thf) only in the presence of excess of Me<sub>3</sub>SiC=CH to give the monomeric  $[Y(C_5Me_5)(OAr)(C=$ terminal acetylide species  $CSiMe_3$ )(thf)<sub>2</sub>] 7. The analogous  $[Y(C_5Me_5)_2(C \equiv$  $CSiMe_3)(OEt_2)$ ] has been prepared.<sup>2a</sup> Complex 3 reacts with

<sup>&</sup>lt;sup>†</sup> NMR data for **3**: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 25 °C): δ 7.35 (br 't', 4H, H<sub>m</sub>), 6.85 (t, 2H, H<sub>p</sub>), 5.30 (t, 1H, J<sub>YH</sub> = 39.5 Hz, μ-H), 1.97 (s, 30H, C<sub>5</sub>Me<sub>5</sub>), 1.65 (br, s, 18H, CMe<sub>3</sub>), 1.56 (br s, 18H, CMe<sub>3</sub>), 1.32 (t, 3H, J 7.3 Hz, Me), 0.94 (br, 2H, C<sub>β</sub>H<sub>2</sub>) and 0.02 (t, 2H, J 8.5 Hz, C<sub>α</sub>H<sub>2</sub>); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 10 °C): δ 160.5 (virtual t, J<sub>YC</sub> = 2.3 Hz, C<sub>ipso</sub>), 137.6 and 136.1 (s, C<sub>o</sub>), 127.4 (d, C<sub>m</sub>), 125.0 (d, C<sub>m</sub>), 119.9 (s, C<sub>5</sub>Me<sub>5</sub>), 117.8 (d, C<sub>p</sub>), 48.5 (tt, J<sub>YC</sub> = 19.7 Hz, J<sub>CH</sub> = 105 Hz, C<sub>α</sub>H<sub>2</sub>), 35.6 and 35.3 (s, CMe<sub>3</sub>), 33.9 and 31.5 (q, CMe<sub>3</sub>), 23.4 (t, J<sub>YC</sub> = 2.0 Hz, C<sub>β</sub>H<sub>2</sub>), 21.0 (Me) and 11.9 (q, C<sub>5</sub>Me<sub>5</sub>). **8**, <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 25 °C': δ 7.35 (d, 4H, H<sub>m</sub>), 6.85 (t, 2H, H<sub>p</sub>), 1.90 (s, 30H, C<sub>5</sub>Me<sub>5</sub>), 1.55 (s, 36H, CMe) and -0.076 (t, 6H, J<sub>YH</sub> = 3.8 Hz, μ-Me); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>-CD<sub>2</sub>Cl<sub>2</sub>, 25 °C): δ 162.2 (s, C<sub>ipso</sub>), 137.8 (s, C<sub>o</sub>), 125.9 (d, C<sub>m</sub>), 121.1 (s, C<sub>5</sub>Me<sub>5</sub>), 117.6 (d, C<sub>p</sub>), 35.9 (s, CMe<sub>3</sub>), 33.0 (q, CMe<sub>3</sub>), 30.92 (qt, J<sub>CH</sub> = 104 Hz, J<sub>YC</sub> = 28 Hz, μ-Me) and 12.4 (q, C<sub>5</sub>Me<sub>5</sub>). Satisfactory elemental analyses were obtained for compounds **2–9**.

Me<sub>3</sub>SiC=CH, not to give the  $\mu$ -propyl  $\mu$ -acetylide [{Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)}<sub>2</sub>( $\mu$ -CH<sub>2</sub>CH<sub>2</sub>Me)( $\mu$ -C=CSiMe<sub>3</sub>)], but affords **5**, the more basic  $\mu$ -alkyl clearly being more susceptible to protonolysis than  $\mu$ -H.

The synthesis and  $\alpha$ -alkene polymerization activity of  $[{(\eta^{5}-C_{5}Me_{4})SiMe_{2}(\eta^{1}-NCMe_{3})Sc(PMe_{3})}_{2}(\mu-H)_{2}],^{5}$  $[{(\eta^{5} C_5Me_4$ )SiMe<sub>2</sub>( $\eta^1$ -NCMe<sub>3</sub>)Sc}<sub>2</sub>( $\mu$ -CH<sub>2</sub>CH<sub>2</sub>Me)<sub>2</sub>]<sup>5</sup> and  $[{Y(C_5H_4R)_2(\mu-R')}_2]$  (R = H, Me, SiMe<sub>3</sub>; R' = Me, Bu<sup>n</sup>)<sup>6</sup> were taken as evidence to support polymerization via an  $M(\mu - R')_2 M$  intermediate. To determine if this was a possibility here, the bis  $\mu$ -Me species [{Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)( $\mu$ -Me)}<sub>2</sub>] 8<sup>+</sup> was prepared from  $[Y(C_5Me_5)(OAr)_2]$  and MeLi (1 equiv.) (Scheme 2). It reacts very slowly with ethene and not at all with an excess of propene (ca. 10 equiv., 25 °C, after several days). A similar lack of reactivity for [{Sc(C<sub>5</sub>Me<sub>5</sub>)(O- $C_6H_3But_2-3,5)Me_{2}^{7}$  was attributed to the presence of robust, apparently bridging alkoxides. We find this highly unlikely. In 8, it is the *influence*<sup>1</sup> of the *terminal* alkoxides that results in the significantly kinetically deactivated  $\mu$ -Me group.

Although only  $\mu$ -hydrido  $\mu$ -alkyl species have been observed and isolated, and it was therefore tempting to propose that propagation occurs *via* dimeric [{Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)}<sub>2</sub>( $\mu$ -H)( $\mu$ -CH<sub>2</sub>R)], a low concentration of an (undetected) monomer {probably [Y(C<sub>5</sub>Me<sub>5</sub>)(OAr)X] (X = H or CH<sub>2</sub>R)} being the active catalyst seems probable. We have shown that in [Y( $\mu$ -alkyl)( $\mu$ -H)Y] **2–4** and [Y( $\mu$ -Me)<sub>2</sub>Y] **8**, both the  $\mu$ -alkyl and  $\mu$ -hydride are significantly kinetically deactivated with respect to their terminal counterparts. The absence of a binuclear chelating ligand system<sup>3</sup> suggests that reversible dissociation to active monomer(s) may be facile, though the Received, 18th July 1991; Com. 1/03675H

## References

- 1 C. J. Schaverien, J. H. G. Frijns, H. J. Heeres, J. R. van den Hende, J. H. Teuben and A. L. Spek, J. Chem. Soc., Chem. Commun., 1991, 642.
- 2 (a) K. H. den Haan, Y. Wielstra and J. H. Teuben, Organometallics, 1987, 6, 2053; (b) G. Jeske, H. Lauke, H. Mauermann, P. N. Swepston, H. Schumann and T. J. Marks, J. Am. Chem. Soc., 1985, 107, 8091; (c) H. J. Heeres, J. Renkema, M. Booij, A. Meetsma and J. H. Teuben, Organometallics, 1988, 7, 2495; (d) W. J. Evans, I. Bloom, W. E. Hunter and J. L. Atwood, J. Am. Chem. Soc., 1981, 103, 6507; (e) P. L. Watson, J. Chem. Soc., Chem. Commun., 1983, 276.
- 3 D. Stern, M. Sabat and T. J. Marks, J. Am. Chem. Soc., 1990, 112, 9558.
- 4 (a) M. A. Busch, R. Harlow and P. L. Watson, *Inorg. Chim. Acta*, 1987, 140, 15; (b) F. Ozawa, J. W. Park, P. B. Mackenzie, W. P. Schaefer, L. M. Henling and R. H. Grubbs, *J. Am. Chem. Soc.*, 1989, 111, 1319.
- 5 P. J. Shapiro, E. Bunel, W. P. Schaefer and J. E. Bercaw, Organometallics, 1990, 9, 867; W. E. Piers, P. J. Shapiro, E. E. Bunel and J. E. Bercaw, Synlett., 1990, 74.
- 6 J. Holton, M. F. Lappert, D. G. H. Ballard, R. Pearce, J. L. Atwood and W. E. Hunter, J. Chem. Soc., Dalton Trans., 1979, 54; D. G. H. Ballard, A. Courtis, J. Holton, J. McMeeking and R. Pearce, J. Chem. Soc., Chem. Commun., 1978, 994.
- 7 W. E. Piers, E. E. Bunel and J. E. Bercaw, J. Organomet. Chem., 1991, 407, 51.