Free Radical Pathways in the Nitrous Acid Deamination of a-Aminonitriles

Michael Bunse, Dirk Jodicke and Wolfgang Kirmse"

Fakultat fur Chemie, Ruhr-Universitat Bochum, 0-4630 Bochum, Germany

Free radicals and carbocations are generated competitively in nitrous acid deamination reactions of α -aminonitriles; in the absence of added scavengers the radicals are trapped by NO₂ and by NO.

Aliphatic diazonium ions decompose *via* cationic and concer-

The results of nitrous acid deamination reactions of

red routes;^{1,2} the intervention of free radicals is extremely

2-amino-2-methylpropanenitrile 4 are sum ted routes;^{1,2} the intervention of free radicals is extremely 2-amino-2-methylpropanenitrile 4 are summarised in Scheme rare.³ In contrast, aryl radicals are readily accessible from 1 and in Table 1. The products of el rare.3 In contrast, aryl radicals are readily accessible from 1 and in Table 1. The products of elimination **1** and of arenediazonium ions.⁴ We now report that the diazotisation of nucleophilic substitution $\hat{3}$, presumably derived from the α -aminonitriles generates free radicals as well as carbocations. carbocation 2, are accompa carbocation 2, are accompanied by 2-methyl-2-nitropropane-

Table 1 Product distribution *(YO)"* obtained from deamination reactions of 2-amino-2-methylpropanenitrile **4** at 25 "C

	Conditions ^{b}	3а	3b	6	9	10	11	12	13
	$NaNO2$, aq. HClO ₄ , $N2$	37.3			13.9	47.4	0.4		
	$NaNO2$, aq. HClO ₄ -pentane, N ₂	5.2			13.9	53.6	4.4	9.5	13.4
3	$NaNO2$, aq. HClO ₄ -pentane, N ₂ ,								
	TEMPO (1 equiv.)	19.1		63.7		17.2			
4	NaNO ₂ , ^d HOAc, N ₂	14.3	12.6	$\overline{}$	28.6	41.8	2.7		
5	NaNO_2 , ^d HOAc, N ₂ , TEMPO (0.5 equiv.)	2.7	3.6	40.2		53.5			
6	$NaNO2, dHOAc, N2, TEMPO (1 equiv.)$	0.5	2.3	50.3	$\overline{}$	46.9			
	$NaNO2, dHOAc, N2, TEMPO (2 equiv.)$	0.7	1.7	59.1		38.5			
8	$NaNO2, dHOAc, N2, TEMPO (4 equiv.)$	0.3	0.3	89.2		10.2			
-9	N_2O_4 , HOAc, N ₂	2.9	2.0	$\overline{}$	4.6	89.4	1.1		
10	N_2O_4 , HOAc, O_2	7.8	7.6			36.9	47.6		

The yields of 2-methylpropenenitrile **1** (15-30% in aq. HC104, 25-45% in HOAc) varied strongly, owing to the volatility of **1** and to secondary reactions with $NO₂$. Therefore, 1 was not included in Table 1. b Two equivalents of the nitrosating agent were added to 0.2 mol dm⁻³ solutions of **4.** ϵ Variation of the pH from 0 to 3.5 had little effect on the product distribution. $\frac{d}{dx}$ Added as a concentrated

nitrile **10** and by the trisubstituted hydroxylamine **9.** 2-Cyano-2-propyl radicals **8,** generated by thermolysis of 2,2'-azo-(2 methylpropanenitrile) **(AIBN).** are known to add NO and NO2 with formation of **9** and **10,** respectively.' In the nitrous acid deamination of **4,** homolysis of covalent diazo species, *e.g.* **5** ($X = NO_2$), is a likely source of **8**.

The primary product arising from **8** and NO, 2-methyl-2 nitrosopropanenitrile **7,** accounts for the blue colouration of our reaction mixtures. When **7** was continuously extracted with pentane as the deamination of **4** proceeded (see line 2 of Table l), and buta-1,3-diene was then added to the organic phase, *ca.* 30% of the $[4 + 2]$ cycloadduct 14⁶ was obtained. Dimerisation of **8** to give **12** and **13** also occurs in the organic phase. An analogous experiment (Scheme 2) with $Na^{15}NO₂$ revealed complete $(\pm 2\%)$ incorporation of ¹⁵N into 7 and 10. Thus **7** and **10** arise from **4** only by way of **8;** an oxidative route is excluded. Treatment of **7** with NO or HN02 gives **10,** again with virtually complete exchange of the nitrogen atom. This

transformation is thought to involve the formation and homolysis of $5 (X = NO₃)$.⁷

Molecular oxygen is known to convert **8** into thc 2-cyano-2 propyloxyl radical,⁸ which should be trapped by $NO₂$ under our conditions. In fact, admission of oxygen to the dcamination of 4 with N_2O_4 -HOAc led to a dramatic increase of the nitrate **11** at the expense of the nitro compound **10** *(cf.* lines 9 and 10 of Table 1). When **2,2,6,6-tetramethylpiperidin-l-oxyl** (TEMPO) was added to nitrous acid deamination reactions of **4,** the 2-cyano-2-propyl radical **8** was scavenged by TEMPO to

Table 2 Product distribution (%) obtained from deamination reactions of **2-amino-2,3,3-trimethylbutanenitrile 18** at 25 "C

 α A concentrated aqueous solution of NaNO₂ (2 equiv.) was added to 0.2 mol dm⁻³ solutions of 18 under N_2 .

give 50-9076 of **6.** TEMPO was found to inhibit the formation of **9** very efficiently *(cf.* lines 4 and *5* of Table 1). Much more TEMPO is required for a significant decrease of **10** (see lines *5-8* of Table 1). TEMPO reportedly scavenges free radicals at rates that are close to diffusion-controlled.⁹ So does $NO₂$,¹⁰ while nitroso compounds react more slowly $(k = 10^{6}-10^{7})$ dm^3 mol⁻¹ s⁻¹).¹¹ Our results are consistent with these relative rates. Remarkably, the relative yield of substitution products **3** also decreases in the presence of TEMPO, an observation that raises questions as to the origin of **3.12**

For further insight, we studied the nitrous acid deamination of **2-amino-2,3,3-trimethylbutanenitrile 18** (Scheme 3 and Table 2). There is ample precedent for the facile rearrangement of α -cyanocarbocations to β -cyanocarbocations.¹³ Free radicals, on the other hand, do not undergo $1,2$ -alkyl shifts.¹⁴ Accordingly, the deamination of **18** produces a single nitro compound **16** of retained structure whereas Wagner-Meerwein rearrangement is the predominant route to alcohols, acetates and alkenes. Although carbocations are unquestionably the precursors of **23** and **24,** some contribution of free radicals to the formation of **20** cannot be excluded.12

TEMPO does not give a stable adduct with the radical **15,** presumably for steric reasons. Nevertheless is appears that the presence of TEMPO enhances the free radical component of the deamination process (for analogous results with **4,** *cf.* Table 1). As a tentative explanation we suggest that TEMPO may intervene at the diazo stage $(X = NO_2 \rightarrow X = TEMPO)$ and thus affects partitioning of the intermediate *5* (Scheme 1).

Exploratory studies with 'radical clocks' confirm the rapid scavenging of α -cyanoalkyl radicals by NO₂. Nitrous acid deamination reactions of **25a** and **27a,** as well as photolyses of the azo compounds 26 and 28 in the presence of N_2O_4 , afforded **25b** and **27b,** respectively, as the only nitro compounds. α -Cyano groups are expected to retard the ring

opening of cyclopropylmethyl radicals $[k (25 °C) = 1.0 \times 10^8]$ s^{-1} ¹⁵ and the cyclisation of hex-5-enyl radicals $[k (25 °C) =$ 2.5×10^5 s⁻¹].¹⁶ As a consequence, isomerisation of the radicals derived from **25-28** cannot compete with trapping by NO2. On the other hand, the carbocation derived from **25a** produces mixtures of **25c, d** and **29c, d.**

In summary, the diazotisation of α -aminonitriles has been shown to induce the competitive formation of α -cyanoalkyl radicals and of α -cyanoalkyl cations. The radical-stabilizing and cation-destabilizing effects of the cyano group concur to facilitate homolysis and to impede heterolysis of α -cyanodiazo(nium) intermediates.

Received, 2nd October 1991; Corn. 1f05048F

References

- 1 For reviews, see: K. Laali and G. A. Olah, *Rev. Chem. Intermed.,* 1985, **6,** 237; W. Kirmse, *Angew. Chem.,* 1976, **88.** 273; *Angew. Chem., Int. Ed. Engl.,* 1976, **15,** 251; E. H. White and D. J. Woodcock in *The Chemistry of the Amino Group,* ed. **S.** Patai, Wiley, London, 1968, pp. 440-482; R. Huisgen, *Angew. Chern.,* 1955, **67,** 439.
- 2 The formation of alkan-1-01s from alkane-l-diazonium ions proceeds with complete inversion of configuration $(S_N 2)$: D. Brosch and W. Kirmse, *J. Org. Chem.,* 1991, **56,** 907.
- 3 The nitrous acid deamination of a perchlorinated homocubyl amine is thought to involve bridgehead radicals: K. V. Scherer, Jr., and R. **S.** Lunt, *J. Am. Chem. SOC.,* 1966, **88,** 2860.
- 4 For reviews, see: C. Galli, *Chem. Rev.,* 1988, **88,** 765; H. Zollinger, in *The Chemistry of Triple-bonded Functional Groups,* Supplement C, ed. **S.** Patai and Z. Rappoport, Wiley, New York. 1983; Part 1, ch. 15; H. Zollinger, *Angew. Chem.,* 1978, **90,** 151; *Angew. Chem., Int. Ed. Engl.,* 1978, **17,** 141; H. Zollinger, *Azo and Diazo Chemistry,* Wiley, New York, 1961.
- *5* B. A. Gingras and W. A. Waters, *J. Chem. SOC.,* 1954, 1920: J. F. Tilney-Basset and W. **A.** Waters, *J. Chem. Soc.,* 1957, 3129.
- 6 0. Wichterle, V. Gregor, A. Dubansky and V. Seidl, *Chem. Listy,* 1957, 51, 605; *Collect. Czech. Chem. Commun.*, 1959, 24, 1158.
- 7 B. G. Gowenlock, J. Pfab and G. Kresze, *Liebig5 Ann. Chem.,* 1957, 1903 and references cited therein.
- 8 E. G. Janzen, P. H. Krygsman, D. A. Lindsay and D. L. Haire, *J. Am. Chem. Soc.,* 1990, **112,** 8279 and references cited therein.
- 9 L. J. Johnston, J. C. Scaiano and K. U. Ingold, *J. Am. Chem. SOC.,* 1984, **106,** 4877; J. Chateauneuf, J. Lusztyk and K. U. Ingold, *J. Org. Chem.,* 1988, **53,** 1629; A. J. L. Beckwith, V. W. Bowry and G. Moad, *J. Org. Chem.,* 1988, **53,** 1632.
- 10 J.-Y. Perk and D. Gutman, *J. Phys. Chem.,* 1983, **87,** 1844.
- 11 T. Doba. T. T. Tchikawa and H. Yoshida, *Bull. Chem. SOC. Jpn.,* 1977, **50,** 3158; P. Schmid and K. U. Ingold, *1. Am. Chem. Soc.,* 1978, 100,2493; Y. Maeda and K. **U.** Ingold, *J. Am. Chem. Soc.,* 1979, **101,** 4975.
- 1979, 101, 4975.
12 We suggest the sequence $R' + NO_2 \rightarrow R-ONO \rightarrow R-OH(R)$ OAc) as a plausible route from **8** to **3.** The formation of nitrites from free radicals and $NO₂$ is well documented: Y. Rees and G. H. Williams, *Adv. Free Radical Chem.,* 1969, **3,** 199; see, however, W. Hochstein and U. Schollkopf, *Liebigs Ann. Chem.,* 1978,1823.
- 13 P. G. Gassman and J. J. Talley, *J. Am. Chem. SOC.,* 1980, **102,** 4138: P. G. Gassman, K. Saito and J. J. Talley, *J. Am. Chem. Soc.,* 1980, **102,** 7613; W. Kirmse and B. Goer, *J. Am. Chem. SOC.,* 1990, **112,** 4556.
- 14 J. W. Wilt, in *Free Radicals* ed. J. K. Kochi, Wiley, New York, 1973, vol. I, p. 333.
- 15 B. Maillard, D. Forest and K. U. Ingold, *1. Am. Chem. Soc.,* 1976, **98,** 7024; D. Griller and K. U. Ingold, *Acc. Chem. Res.,* 1980, **13,** 317; M. Newcomb and A. G. Glenn, *J. Am. Chem. Soc..* 1989, **111,** 275.
- 16 C. Chatgilialoglu, K. U. Ingold and J. C. Scaiano, *J. Am. Chem.* SOC., 1981, **103,** 7739.