Novel AlCl₃ Catalysed Syntheses of Naturally Occurring (±) 8-Hydroxy-3-methyl-3,4-dihydroisocoumarins

Raghao S. Mali,* Prakash G. Jagtap, Shrikant R. Patil and Prakash N. Pawar

Garware Research Centre, Department of Chemistry, University of Poona, Ganeshkhind, Pune 411 007, India

Treatment of (\pm) 3-ethylphthalides **2** or 2-(prop-1-enyl)benzoic acids **5** with AlCl₃ in methylene chloride gives naturally occurring (\pm) 8-hydroxy-3-methyl-3,4-dihydroisocoumarins **3** in high yields.

A large number of 8-hydroxy-3-methyl-3,4-dihydroisocoumarins 3 have been isolated from natural sources. The parent compound mellein 3a is widespread in nature and isolated from various microorganisms. 1 8-Hydroxy-3-alkyl-3,4-dihydroisocoumarins are known to possess antifungal, insecticidal and antitumor activities. 1 8-Hydroxy-3,4-dihydroisocoumarins such as AI-77s1 have been found to exhibit unique antiulcerogenic activity against stress ulcers in rats without anticholinergic, antihistamineric and central suppressive effects.² In view of this several methods have been developed for their synthesis. 1-4 In this communication we report two different approaches for the synthesis of (\pm) 8-hydroxy-3methyl-3,4-dihydroisocoumarins 3. A recent report⁴ which makes use of 2-(prop-1-enyl)benzoic acids for the synthesis of (\pm) 8-hydroxy-3-substituted-3,4-dihydroisocoumarins 3 prompted us to publish our results.

In our first approach (Scheme 1) the phthalide anions obtained by reaction of phthalides⁵ **1a–d** with LDA in THF at -78 °C for 10 min, were treated with ethyliodide (-78 to 0 °C for 1–2 h) to give the corresponding (\pm) 3-ethylphthalides **2a–d**. Treatment of phthalides **2a, c, d** with anhydrous AlCl₃ in

methylene chloride at room temperature for 1-2h (monitored by TLC) provided (\pm) 8-hydroxy-3-methyl-3,4-dihydroiso-coumarins 3a, c, d in 78, 72 and 68% yield, respectively. In the case of (\pm) 5,6,7-trimethoxy-3-ethylphthalide 2b along with (\pm) kigelin (3b, 61%) a minor amount of (\pm) 7-demethyl-kigelin (3e, 10%) was also obtained. The position of hydroxy groups in 3e was confirmed by NOE experiment.

Scheme 1 Reagents and conditions: i, LDA, THF, $-78\,^{\circ}\text{C}$; ii, EtI; iii, AlCl₃, CH₂Cl₂

MeO O

R

$$R^1$$
 CHO
 R^2
 R^1
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4
 R^4
 R^2
 R^4
 R^4

Scheme 2 Reagents and conditions: i, Ph₃P+EtBr-, KOBu^t; ii, AlCl₃, CH₂Cl₂

In the second approach (Scheme 2), a mixture of (E)- and (Z)-2-(prop-1-enyl)benzoic acids ${\bf 5a-b}$ synthesised from phthalaldehydric acids ${\bf 4a-b}$ using Wittig reaction, were treated with AlCl₃ in methylene chloride at room temperature to provide the corresponding (\pm) 8-hydroxy-3-methyl-3,4-dihydroisocoumarins ${\bf 3a,b}$ in 86 and 66% yield, respectively. In the case of ${\bf 5b}$ along with ${\bf 3b}$ (66%), a minor amount of ${\bf 3e}$ (10%) was also isolated. In these methods AlCl₃ acts as a reagent for the conversion of phthalides ${\bf 2}$ and 2-(prop-1-enyl)benzoic acids ${\bf 5}$ into the corresponding (\pm) 8-methoxy-3-methyl-3,4-dihydroisocoumarins and for selective demethyl-ation of ${\bf C_8}$ -methoxy group.

To demonstrate the generality of this reaction, (\pm) 3-alkyl-3,4-dihydroisocoumarins **8a-b** have also been synthesised in high yields (85 and 81%, respectively) from a mixture of (*E*)-and (*Z*)-2-vinylbenzoic acids⁸ **7a-b** using AlCl₃ (Scheme 3).

The IR and ¹H NMR spectral data of isocoumarins **3a-c**, **3e** and **8a** are identical with those reported^{7,9,10}. Isocoumarin **3d** also exhibited satisfactory analytical and spectral data.[†]

The present approaches demonstrate the synthetic utility of $AlCl_3$ and also provide exclusively isocoumarins 3 and 8 from the corresponding (\pm) 3-ethylphthalides 2 and 2-(alk-1-enyl)benzoic acids (5 and 7). These routes appear to be more attractive than the recently reported method,⁴ which gives a

† **3d**: ¹H NMR (CDCl₃, 90 MHz) δ 1.50 (d, J 6.5 Hz, 3H, CH₃), 2.86 (d, J 8 Hz, 2H, CH₂), 3.86 (s, 3H, OCH₃), 4.52–4.88 (m, 1H, C₃H), 6.61 (d, J 9 Hz, 1H, ArH), 6.97 (d, J 9 Hz, 1H, ArH), 11.2 (s, exchangeable with D₂O, 1H, OH).

Scheme 3 Reagents and conditions: i, Ph₃P+ CH₂-RBr-, KOBu^t; ii, AlCl₃, CH₂Cl₂

mixture of isocoumarins and phthalides under variety of conditions from 2-(prop-1-enyl)benzoic acids.

P. G. J. thanks UGC, New Delhi for the award of a Senior Research Fellowship.

Received, 17th January 1992; Com. 2/00290F

References

- 1 R. A. Hill, H. C. Krebs, R. Verpoorte and R. Wijnsma, *Progress in the Chemistry of Natural Products 49*, Springer, Wein, New York, 1986 and references cited therein.
- 2 J. P. Gesson, J. C. Jacquesy and M. Mondon, *Tetrahedron Lett.*, 1989, 30, 6503 and references cited therein.
- L. M. Harwood, J. Chem. Soc., Chem. Commun., 1982, 1120;
 A. C. Regan and J. Staunton, J. Chem. Soc., Chem. Commun., 1983, 764;
 K. M. Pietrusiewicz and I. Salamonczyk, J. Org. Chem., 1988, 53, 2837;
 R. G. F. Giles, I. R. Green and J. A. X. Pestana, J. Chem. Soc. Perkin Trans. 1, 1984, 2389;
 J. K. Kendall, T. H. Fisher, H. P. Schultz and T. P. Schultz, J. Org. Chem., 1989, 54, 4218;
 F. M. Hauser and V. M. Baghdanov, J. Org. Chem., 1988, 53, 4676;
 K. Mori and A. K. Gupta, Tetrahedron, 1985, 41, 5295;
 C. C. Kanakam, N. S. Mani, H. Ramanathan and G. S. R. Subba Rao, J. Chem. Soc., Perkin Trans. 1, 1989, 1907;
 S. D. Broady, J. E. Rexhausen and E. J. Thomas, J. Chem. Soc., Chem. Commun., 1991, 708.
- 4 Y. Hamada, O. Hara, A. Kawai, Y. Kohno and T. Shioiri, *Tetrahedron*, 1991, **47**, 8635.
- 5 R. S. Mali, P. G. Jagtap and S. G. Tilve, Synth. Commun., 1990. 20, 2641.
- 6 N. S. Narasimhan and R. S. Mali, Synthesis, 1975, 797; R. S. Mali and S. N. Yeola, Indian J. Chem., 1986, 25B, 804.
- 7 T. R. Govindachari, S. J. Patankar and N. Viswanathan, *Phytochemistry*, 1971, **10**, 1603.
- 8 R. S. Mali, S. R. Patil, B. K. Kulkarni and S. N. Yeola, *Indian J. Chem.*, 1990, **29B**, 319.
- 9 M. P. Sibi, M. A. Jalil Miah and V. Snieckus, *J. Org. Chem.*, 1984, 49, 737 and references cited therein.
- 10 G. B. Henderson and R. A. Hill, J. Chem. Soc., Perkin Trans. 1, 1982, 1111.