endo-σ-Bonded Group 14 Heterodicarboranes: Synthesis of $[Ph_3MC_2B_9H_{11}]^-$ [M = Germanium(IV), Tin(IV)] and Structure of $[10-endo-(SnPh_3)-10-\mu-H-7,8-nido-C_2B_9H_{10}][trans-Ir(CO)(PPh_3)_2(MeCN)]$

Jinkwon Kim, a Sangsoo Kim^b and Youngkyu Do*a

^a Department of Chemistry and Center for Molecular Science, Korea Advanced Institute of Science and Technology, 373-1 Kusung-dong, Taejon 305-701, Korea

^b Lucky Central Research Institute, Taejon 302-343, Korea

Reaction of equimolar amounts of thallium(1) salts of monoanionic group 14 heterodicarboranes $[Ph_3MC_2B_9H_{11}]^-$, generated *in situ* by treating $Tl_2C_2B_9H_{11}$ with Ph_3MCl in MeCN, and *trans*-Ir(CO)(PPh_3)_2Cl afforded [10-*endo*-(MPh_3)-10- μ -H-7,8-*nido*- $C_2B_9H_{10}$][*trans*-Ir(CO)(PPh_3)_2(MeCN)] (M = Ge^{IV}, Sn^{IV}) in which the Ph_3M moiety interacts with the unique boron atom of the *nido*- C_2B_9 cage *via endo*- σ -M–B bond as well as weak M–H–B bridge bond.

The heterocarborane chemistry of the main group elements has been developed largely in the form of π -complexes.^{1–4} In contrast to a wealth of π -coordination carborane chemistry of *p*-block elements, examples of σ -bonded heterocarboranes are scarce and limited to C₂B₉H₁₁^{2–} complexes of Al^{III} and Si^{IV.3} The paucity of recent work on the σ -coordination dicarborane chemistry and the recent demonstration on the use of [10-*endo*-(AuPPh₃)-7,8-*nido*-C₂B₉H₉Me₂]⁻ anion⁵ as a carborane cage transfer reagent⁶ prompted a synthetic search for σ -bonded heterodicarboranes of heavier group 14 atoms in the formal +4 state.

The Tl^I salt of $[Ph_3SnC_2B_9H_{11}]^- 1$ was prepared by allowing an equimolar (0.5 mmol) slurry of Tl₂C₂B₉H₁₁ and Ph₃SnCl in

 $\begin{bmatrix} C_2 B_9 H_{12} \end{bmatrix}^{-1}$ M = Ge M = Sn M

Fig. 1 ¹¹B{¹H} NMR spectra of $[Ph_3MC_2B_9H_{11}]^-$ (M = Ge, Sn) in MeCN-10% CD₃CN. The top spectrum is that of [10-endo-H-7,8-C₂B₉H₁₁]⁻ in the same medium with internal BF₃·OEt₂.

20 ml tetrahydrofuran (THF) to react anaerobically at ambient temperature for 5 h, followed by treatment of the concentrated colourless reaction filtrate with Et₂O. Recrystallization from THF-Et₂O afforded analytically pure white Tl·1 solids in 77% yield.† In MeCN, the compound Tl·1, as isolated or generated *in situ*, reacts with *trans*-Ir(CO)(PPh₃)₂-Cl to afford yellow crystalline [*trans*-Ir(CO)(PPh₃)₂-(MeCN)]·1 in *ca*. 68% yield.† The lighter congener of 1, [Ph₃GeC₂B₉H₁₁]⁻ 2, was also isolated as a yellow salt of [*trans*-Ir(CO)(PPh₃)₂(MeCN)]⁺ cation in 54% yield from the equimolar reaction mixture of Tl₂C₂B₉H₁₁-Ph₃GeCl and *trans*-Ir(CO)(PPh₃)₂ Cl in MeCN.†

The ¹¹B{¹H} NMR spectra of **1** and **2** in MeCN, displayed in Fig. 1 along with that of the $C_2B_9H_{12}^-$ monoanion, indicate the C_s symmetrical nature of these group 14 heterodicarborane anions in solution and greater structural similarity among the foregoing three anions. Recent establishment⁷ of the *endo-* σ -bonding nature of the 12th hydrogen in [7,8-*nido*- $C_2B_9H_{12}$]⁻ and the isolobal analogy⁸ between H⁺ and [Ph₃M]⁺ (M = Ge, Sn) suggest that the species **1** and **2** might be expected to contain an *endo-* σ -M–B bonding interaction. The molecular structure of [*trans*-Ir(CO)(PPh₃)₂(MeCN)]·**1**, established by X-ray diffraction,‡ is consistent with these expectations.

The crystal structure consists of well separated anion 1 and $[trans-Ir(CO)(PPh_3)_2(MeCN)]^+$ cation. In the anion 1 whose molecular structure is displayed in Fig. 2, an *endo*-(Ph_3Sn)+

[†] All NMR spectra but ¹H NMR were taken in MeCN–10% CD₃CN. Data for Tl·1:IR(KBr), v_{BH}/cm⁻¹ 2566, 2510, 2474 and 2422; ¹¹B{¹H} NMR (referenced to external BF₃·OEt₂) δ –11.0, –14.8, –20.7, –34.2 and –37.1; ¹¹⁹Sn NMR (referenced to external SnMe₄) δ –21 (Δ_{1/2} 660 Hz). Data for [*trans*-Ir(CO)(PPh₃)₂(MeCN)]-1: IR(KBr) v_{BH}/cm⁻¹ 2521, v_{BHSn} 2398, v_{CN} 2289, v_{CO} 1997 and 1981; ¹¹H NMR(CD₃CN), δ 7.69–7.27 (m, Ph-H), 2.18 (s, Me-H) and 1.16 (s, carboranyl CH); ¹¹B{¹H} NMR δ –11.1, –15.1, –21.1, –34.6 and –37.3; ³¹P{¹H} NMR (referenced to external 85% H₃PO₄) δ 25.2. Data for [*trans*-Ir(CO)(PPh₃)₂(MeCN)]-2: IR(KBr) v_{BH}/cm⁻¹ 2519, v_{BHGe} 2397, v_{CN} 2288 and v_{CO} 1998; ¹¹B {¹H} NMR δ –5.0, –12.3, –21.0, –31.2 and –38.1. Satisfactory elemental analyses were obtained for all three compounds.

‡ Crystallographic data for [trans-Ir(CO)(PPh₃)₂(MeCN)]·1: C₅₉H₅₉B₉IrNOP₂Sn, M = 1268.3, monoclinic, space group $P2_1/n$, a = 11.552(2), b = 45.568(10), c = 11.852(3) Å, $\beta = 92.56(1)^\circ$, V = 5822.6, Z = 4, $D_c = 1.45$ g cm⁻³, $R(R_w) = 0.052$ (0.057) for 4081 observed data [$F > 6\sigma(F)$]. The diffraction data of a yellow needle crystal growth from an MeCN-Et₂O-pentane solution by layer diffusion were collected at 298 K in the ω scan mode on an Enraf-Nonius CAD4 diffractometer using Mo-K α radiation to a maximum 20 value of 40°. The structure was solved with use of statistical method (SHELXS 86) and full-matrix least-squares procedures (SHELX 76) on the CRAY-2S/4-128 supercomputer. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 2 Molecular structure of $[10\text{-}endo\text{-SnPh}_3\text{-}10\text{-}\mu\text{-}H\text{-}7,8\text{-}nido\text{-}C_2B_9H_{10}]^-$ 1. Dimensions: Sn-B(10) 2.324(16), Sn···B(9) 2.761, Sn···B(11) 2.764, Sn···H(10) 2.349, C(7)-C(8) 1.524(19), <B-B_{facial} > 1.836, <B-C_{facial} > 1.606 Å; Sn-B(10)-H(10) 77.3(8), Sn-B(10)-B(9) 82.4(8), Sn-B(10)-B(11) 82.2(8), C(11)-Sn-B(10) 125.6(4), C(21)-Sn-B(10) 107.9(4), C(31)-Sn-B(10) 107.3(4), C(11)-Sn-C(21) 107.0(3), C(11)-Sn-C(31) 106.5(3), C(21)-Sn-C(31) 99.5(3)^{\circ}. The atom H(10) was located in a difference map but its position was not refined.

moiety interacts with the unique boron atom of the *nido*-C₂B₉ cage *via* a σ -Sn-B(10) bond [2.324(16) Å] and a weak Sn-H(10)-B(10) bridge bond. The observation of an IR band at 2398 cm⁻¹ is indicative of the presence of a weak Sn-H-B bridge interaction.† The slipping parameter Δ^9 which reflects the extent of the *nido* nature of the tin unit is calculated as 1.257 Å. This is the largest value among the structurally characterised *endo*- σ bonded MC₂B₉H₁₁ species and might be partially ascribed to the bridge bond. Previously, Δ values of 0.91, 0.87 and 0.92 Å were reported for [10-*endo*-L-7,8-*nido*-

 $C_2B_9H_{11}]^-$ (L = H⁷ and Ph₃PAu⁵) and [10-*endo*-(Ph₃PHg)-7,8-*nido*- $C_2B_9H_{11}$],¹⁰ respectively. The pentagonal C_2B_3 face is slightly nonplanar and fold angles⁹ are $\theta = 1.51$ and $\phi =$ 2.66°. It is interesting to note that one phenyl ring is situated on top of the C_2B_3 plane like a visor such that a dihedral angle of 31.0° and a C(11)-Sn-B(10) angle of 125.6(4)° result.

The discrete nature between the iridium cation and the anion 1 or 2 clearly indicates that $TI[Ph_3MC_2B_9H_{11}]$ (M = Ge or Sn) does not act as either a carborane cage transfer agent or a synthon for preparing polynuclear metal compound toward Vaska's complex. With Cu(PPh_3)_3Cl, Tl salts of 1 and 2 seem to take different reaction route whose nature and the X-ray structure of [*trans*-Ir(CO)(PPh_3)_2(MeCN)]·2 are under investigation.

Support of this work by the Korea Science and Engineering Foundation is gratefully acknowledged.

Received, 30th March 1992; Com. 2/01645A

References

- N. S. Hosmane and J. A. Maguire, in *Advances in Boron and the Boranes*, ed. J. F. Liebman, A. Greenberg and R. E. Williams, VCH, 1988, pp. 297–328.
- 2 P. Jutzi and P. Galow, J. Organomet. Chem., 1987, **319**, 139; P. Jutzi, Pure Appl. Chem., 1990, **62**, 1035.
- 3 D. M. Schubert, M. C. Bandman, W. S. Rees, Jr., C. B. Knobler, P. Lu, W. Nam and M. F. Hawthorne, *Organometallics*, 1990, 9, 2046; D. M. Schubert, W. S. Rees, Jr., C. B. Knobler and M. F. Hawthorne, *Organometallics*, 1990, 9, 2938; M. J. Manning, C. B. Knobler, M. F. Hawthorne and Y. Do, *Inorg. Chem.*, 1991, 30, 3591.
- 4 P. Jutzi, D. Wegener and M. B. Hursthouse, *Chem. Ber.*, 1991, 124, 295; P. Jutzi, D. Wegener and M. B. Hursthouse, *J. Organomet. Chem.*, 1991, 418, 277.
- 5 E. J. M. Hamilton and A. J. Welch, Polyhedron, 1990, 9, 2407.
- 6 J. A. K. Howard, J. C. Jeffrey, P. A. Jelliss, T. Sommerfeld and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1991, 1664.
- J. Buchanan, E. J. M. Hamilton, D. Reed and A. J. Welch, J. Chem. Soc., Dalton Trans., 1990, 677.
- 8 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 771.
- 9 D. M. P. Mingos, M. I. Forsyth and A. J. Welch, J. Chem. Soc., Chem. Commun., 1977, 605; D. M. P. Mingos and M. I. Forsyth, J. Chem. Soc., Dalton Trans., 1978, 1363.
- 10 H. M. Colquhoun, T. J. Greenhough and M. G. H. Wallbridge, J. Chem. Soc., Dalton Trans., 1990, 619.