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Key building blocks 16 and 17 related to taxol CD ring system have been synthesized in racemic form via a 
stereocontrolled and efficient sequence featuring a novel Diels-Alder reaction and oxetane formation. 

In the preceding communication' we outlined a plausible 
convergent strategy for the total synthesis of taxol 12 and a 
convenient synthesis of a suitable ringA equivalent, one of the 
two requisite fragments. In this communication we report a 
stereocontrolled and expedient entry into fully functionalized 
systems corresponding to the CD ring system which represents 
the other requisite segment for a projected taxol synthesis. 

containing fragments 16 and 17 in racemic forms. This 
approach is based on a Diels-Alder reaction of dienophile 2t 

'f Dienophife was prepared in ccI, 70y0 overall yield from allyl 
alcohol by the following sequence: (i) silylation with BufPh2SiC1- 
imidazole; (ii) ozonolysis; (iii) condensation with Ph3P=CH(Me)- 

Scheme 1 summarizes the construction of the oxetane- C02Et;  and (iv) desilylation using Bu*I4NF. 
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Taxol: 1 

and 3-hydroxy-2-pyrone 33 and made intramolecular through 
the action of phenylboronic acid according to a procedure 
recently reported from the Narasaka group.4 The presumed 
intermediacy of 4 ensures the desired regiochemical outcome 
of this cycloaddition reaction leading, initially, to product 5 
which apparently rearranges under the reaction conditions to 
compound 6$§ (61% yield). The structure of 6 was supported 
by chemical and spectroscopic data (Scheme 2). Thus, 
acetylation of 6 (Scheme 2) gave a diacetate 18, the 1H NMR 
spectrum of which exhibited downfield shifts for protons Ha 
and Hb [300 MHz, CDC13, 6 (6): Ha 4.59; Hb 3.10; (18): Ha 
5.90; Hb = 3.951 as expected. Furthermore, oxidation of 6 led 
to enone 20 (Scheme 2), whereas persilylation afforded 
bis(sily1) ether 19 from which the crystalline diol 22 was 
prepared. An X-ray crystallographic analysis of 22 confirmed 
its structure and those of its precursors (assuming no skeletal 
changes under the conditions of the reactions shown in 
Scheme 2; exposure of 6 to DMAP or CSA in CDC13 resulted 
in no changes in its 1H NMR spectrum). Dibenzylation of 6 
(Scheme 2) under the influence of KH was accompanied by 

$ All new compounds exhibited satisfactory spectral and analytical 
and/or exact mass data. Yields refer to chromatographically and 
spectroscopically homogeneous materials. 

S, Selected data for 6 :  pale-yellow oil; Rf 0.25 (silica, 70% diethyl ether 
in light petroleum); IR (neat) v,,,/cm-l 3441, 2979, 1777 and 1727; 

H=CH), 5.82 (br d,  J 10.0 Hz, 1 H ,  CH=CH), 4.63-4.58 [m, 2 H ,  

C(0)-1, 4.18 (9, J 7.1 Hz, 2 H ,  CH2CH3), 3.70 (br, 1 H,  OH), 3.10 
[dd, 17 .7  Hz, 1 H ,  -CHCH2O-C(O)-], 2.55 (br, 1 H, OH), 1.29 (s, 3 
H ,  Me) and 1.26 (t, J 7 . 1  Hz, 3 H, CH2CH3): HRMS(FAB+): Calcd 
for CI2H1606Cs (M+ + Cs+): 389.0001, found m/z 389.0005. 

For 10: amorphous foam; Rf 0.20 (silica, 50% diethyl ether in light 
petroleum): IR (neat) v,,,/cm-l 3398, 2924, 1453, 1369, 1219 and 
1063; IH NMR (300 MHz, CDC13): 6 7.41-7.28 (m, 10 H ,  ArH), 4.66 
and 4.39 (AB quartet, J 11.8 Hz, 2 H ,  CH2Ph), 4.64 and 4.56 (AB 
quartet, J 10.1 Hz, 2 H ,  CHZPh), 4.10 and 3.52 (AB quartet, br, J 12.0 

2.2, 12.3 Hz, 1 H,  -CH20Bn), 3.80 (dd, J 7.0, 12.3 Hz, 1 H ,  
-CH20Bn), 3.71 and 3.40 (AB quartet, J 11.6 Hz, 2 H ,  CH2-0-), 

'H NMR (300 MHz, CDC13): 6 6.09 (dd, J 4.0, 10.0 Hz, 1 H ,  C 

CH-OH, -CH20-C(0)-], 4.45 [dd, J 8.2, 9.3 Hz, 1 H,  -CH2O- 

Hz, 2 H ,  CHzOH), 4.05 (dd, J 4.4, 12.6 Hz, 1 H, CHOH), 3.86 (dd, J 

3.07 (dd, J4 .1 , l l .S  Hz, 1 H,  -CH-0-), 2.47 (ddd, J 4.1,4.4,12.2 Hz, 
1 H ,  CHz), 1.85 (ddd, J 12.2 Hz, 1 H ,  CH2), 1.72 (dd, J 2 . 2 , 7 . 0 H ~ ,  1 
H,  CH-CH2-OBn), 1.34 (s, 3 H ,  Me), 1.32 (s, 3 H, Me) and 1.15 (s, 3 
H ,  Me); HRMS (FAB+): Calcd for C27H3606C~ (M + Cs+): 
589.1566, found m/z 589.1566. 

For 17: oil; Rf 0.40 (80% diethyl ether in light petroleum); IR (neat) 
v,,,/cm-l 3450, 2980, 2870, 1465 and 1072; 1H NMR (500 MHz, 
C6D6): b 7.57-7.32 (m, 10 H ,  ArH), 5.09 (dd, J 3.2, 8.6 Hz, 1 H ,  
CHO), 4.75 and 4.63 (AB quartet, J 7.5 Hz, 2 H ,  CH20),  4.70 and 
4.55 (AB quartet, J 11.6 Hz, 2 H ,  benzylic), 4.70 and 4.54 (AB 
quartet, J 11.7 Hz, 2 H ,  benzylic), 3.94 and 3.64 (AB quartet, J 11.1 
Hz, 2 H ,  CH20) ,  3.80 (dd, 56 .3 ,  10.7 Hz, 1 H,  CHO), 3.70 (m, 2 H, 
CH2O),2.47(t,J5.9Hz.1H,CH),2.40(m,1H,CH2),2.32(m,1H, 
CH2) and 1.36 (s, 3 H ,  Me); 13C NMR (125 MHz, C6D6) 6 139.36, 
138.88, 128.67, 128.59, 128.30, 127.91, 127.87, 127.63, 82.39, 80.73, 
76.69,7.5.17,71.84,66.43,65.15,59.62,43.97,42.02,32.85 and 12.14; 
HRMS (FAB+) Calcd for C14H3005Cs (M+ + Cs+): 531.1148, found 
m/z 531.1164. 
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Scheme 1 Reagents and conditions: ( a )  1.0 equiv. of PhB(OH)2, PhH, 
90"C, 48 h; 1.0 equiv. of 2,2-dimethylpropane-1,3-diol, 25 "C, 30 min, 
61% ; (b)  2.5 equiv. of KH, 2.5 equiv. of PhCHzBr, THF, 0.2 equiv. of 
Bun4NI, O'C, 30 min then 25 "C, 1 h, 80%; ( c )  5.0 equiv. of Red-Al, 
PhH-THF (9 : l), reflux, 1 h, 90%; (d)  excess of 2,2-dimethoxypro- 
pane, 0.1 equiv. of CSA, CH2C12, 100% ( e )  10.0 equiv. of  BH3.THF, 
CH2CI2, 25 "C, 1 h; excess of H202, excess of NaOH, 25 "C, 30 min, 
60%; excess of Ac20,  2.5 equiv. of DMAP, CH*C12,25 "C, 30 min, 
90%; (g) 0.2 equiv. of CSA, MeOH, 100%; (h)  2.4 equiv. of 
Bu'Me2SiOTf, 2.6 equiv. of 2,6-lutidine, CH2C12, 25 "C, 30 min, 90%; 
( i )  excess of NaOMe, MeOH, 25"C, 2 h, 95%; (j) 1.2 equiv. of 
MeS02C1, 2.0 equiv. of DMAP, CH2C12, O"C, 2 h, 80%; ( k )  5.0 
equiv. of NaH, E t20 ,  45"C, 12 h, 95%; (I) 3.0 equiv. of Bun4NF, 
THF, 25 "C, 3 h,  90%. THF = tetrahydrofuran; DMAP = 4-dimethyl- 
aminopyridine; CSA = camphorsulfonic acid; Tf = CF3S02. 

skeletal rearrangement back to a [2.2.2] bicyclic system, 
furnishing intermediate 7 (80%). The latter compound 7 was 
reduced with excess of Red-A1 to the trio1 8 (90%). Selective 
acetonide formation led to compound 9 in quantitative yield. 
Regio- and stereo-selective hydroboration of 9 was directed by 
the appropriately disposed hydroxymethyl group, leading to 
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Scheme 2 Reagents and conditions: ( a )  excess of Ac20,  2.5 equiv. of 
DMAP, CH2C12, 25 "C, 10 min, 100% ; (b )  1.2 equiv. of PDC, 4 8, MS, 
CH2C12 O T ,  30 min then 25"C, 30 min, 81%; ( c )  5.0 equiv. of 
ButMe2SiOTf, 6.0 equiv. of 2,6-lutidine, 25"C, 2.5 h, 67%; (d)  1.2 
equiv. of LiA1H4, Et20, 2 5 T ,  30 min, 87%; ( e )  1.0 equiv. of CSA, 
CH2C12-MeOH (1: l ) ,  2 5 T ,  20 min, 100%. PDC = pyridinium 
dichromate. 

diol 105 in 60% yield. Acetylation of 10 followed by removal 
of the acetonide group and bis(sily1ation) gave derivative 13 
via compounds 11 and 12 in 90 and 100% yields, respectively. 
Deacetylation of 13 under basic conditions resulted in the 
formation of diol 14 which was selectively converted to 
monomesylate 15 (80% yield) by the use of a slight excess of 
the requisite reagents (Scheme 1). Finally, treatment of 15 
with NaH in diethyl ether at 45°C for 12 h gave oxetane 16 
(90% yield)5 from which the silyl groups were removed by the 
action of Bun4NF (92%) to afford compound 17.9 

The described chemistry may prove useful in studies 
directed toward the total synthesis of taxol l  and analogues of 
it. 
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