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Aryl Group n-Facial Electrostatic Asymmetry as a Contributing Factor to Chiral

Resolution on B-Cyclodextrin HPLC Phases
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A model based on ni-facial asymmetry in the calculated molecular electrostatic potentials is proposed to account for
chromatographic behaviour of phaclofen 1 and its fluorinated derivatives 2—4 on a chiral cyclodextrin stationary phase.

There is much interest in understanding the interactions
responsible for chiral recognition by cyclodextrin-bonded
HPLC phases.! For racemic molecules containing an aryl ring,
it is generally accepted that this moiety is reversibly com-
plexed with the hydrophobic cavity of the cyclodextrin ring.?
Chiral selectivity is then thought to occur according to the
three-point model,? when the substituents on the rest of the
guest molecule interact with the exposed hydrophilic centres
on the glucose units via two further (stabilising or destabilis-
ing) interactions, although it has been speculated that an aryl
ring may represent a multiple interaction point.1.2

1a;R' =R =H
2a;R'=R*=F
3a;R'=H,R2=F
43;H1=F,R2=H

In a chromatographic study of phaclofen 1 and the closely
related difluoro derivative* 2 on an acetylated f-cyclodextrin
stationary phase, we observed chiral separation for 2 but not
for 1. Furthermore, analysis of a mixture4 of 3 and 4 revealed
chiral separation only for the minor (40%) diastereoisomer
(Fig. 1), assigned on the basis of NMR evidence as 4.1 We
suggest here a theoretical model for the chromatographic
behaviour of 14 in terms of asymmetry in the m-facial
molecular electrostatic potentials on the aryl ring as a
contributing factor to chiral resolution.

The free energy difference necessary to produce a separa-
tion factor of 1.11 in 2 (Fig. 1) is of the order of 240 J mol~! in
the binding of the two enantiomers to the chiral stationary
phase. It has been shown that rigorously calculated gas-phase

T The 1F spectrum of the mixture of 3 and 4 confirmed two isomers in
the ratio of 40:60. The minor isomer (0 —195.1) exhibits coupling
(UJp_p 65.1, 2Jp_y 46.6, 3y 6.8 Hz) consistent with the =~90°
H-C-C-F dihedral angle calculated using PM3 for 4a, whilst the
major isomer (8 —214.7, 2Jp_F 63.5, 2Jp_y 45.8, 3Jp.y 32.8 Hz) is
consistent with the =~154° angle calculated for 3a (c¢f. G. Govil, Mol.
Phys., 1971, 21, 953).
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molecular electrostatic potentials (MEPs) can often provide a
valuable insight into such small and subtle effects.5 Here we
present such PM3 molecular orbital calculations® for both the
zwitterionic forms la—4a, in which a strong P-O—---H-N~+
hydrogen bond might be expected to impart conformational
rigidity to the system, and the un-ionised neutral states 1b—4b,
in which neutral phosphate and amino groups interact via a
weaker P-OH:---N hydrogen bond. In aqueous solution at pH
=7, the estimated pK, values of phosphonate (=2.5 and =7.0)
and ammonium cation (=10.6) groups in the appropriate
environment’ suggest that a significant proportion of these
species exist as 1a—4a, a conclusion unlikely to be modified
significantly in the aqueous methanolic solvents employed in
our study.
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Fig. 1 Chromatographic behaviour showing (@) no chiral separation,

for 1; (b) clear separation for 2: (¢) separation of only the minor
diastereoisomer 4 and not the major isomer 3. Conditions for («) and
(b): column, cyclobond I acetylated (250 mm X 4.6 mm); mobile
phase, methanol/aqueous triethylamine—acetic acid (pH 7.2), 45:55.
Flow rate 1 ml min—!, UV detection at 220 nm, temperature ambient.
Conditions for (¢) are the same as (a) but the mobile phases were in
the ration 40: 60.
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Fig. 2 Calculated PM3 molecular electrostatic potentials, contoured at 0.040 Hartree for the zwitterionic forms (a) la,
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A clear correlation is apparent between on the one hand the
large asymmetry in the calculated negative component of the
MEP for the syn- and anti-n faces of 2 (Fig. 2) and its chiral
separation (Fig. 1), and on the other hand the lack of
asymmetry in the syn- and anti-n faces of 1 and a correspond-
ing lack of chiral separation in this compound. These MEP
calculations are performed on gas-phase models, but our
previous experience with solvation models for glycine8 sug-
gests that the wavefunction of a solvated zwitterion would be
intermediate between that of e.g., 2a and 2b, and that
therefore the facial electrostatic asymmetry in this diastereo-
isomer would persist. For the neutral forms of the compounds
3b and 4b it is possible to integrate the combined negative
MEP component due to the m-face and the fluorine atom
separately from that due to the phosphate group. The anti-n
faces in the diastereoisomers 3b (3.85 A3 at a potential of
0.032 Hartree) and 4b (3.71 A3) are both similar in volume to
the syn-face in 3b (4.05 A3 associated with the n-face, 0.23 A3
with the fluorine atom), whereas the syn-face of 4b (16.84 A3
due to the combined n-face and fluorine atom) is dramatically
different. In the zwitterionic forms 3a and 4a, the negative
MEP due to phosphate and the m-face are contiguous and
cannot be separately integrated, but the same qualitative
trend is apparent (Fig. 2). This result is entirely consistent with
the chromatographic and NMR results.¥ On this basis, we
predict that monofluorination on C-1 should produce similar
chiral selectivity arising again from the aryl group.

The stereoelectronic origins of the asymmetry in the MEP
can be probed using a localised orbital analysis of the PM3
wavefunctions,® which reveals the R! fluorine orbitals in 2b
(C-F o, —22.65, F lone pairs, —18.31, —15.94 and —15.88 e V)
to be destabilised relative to the R2 orbitals (—22.90, —18.54,
—16.19 and —16.14 eV). A larger effect is found for 2a (R!;
C-F 0, —22.48, F lone pairs, —18.00, —15.66 and —15.60, R2;
—22.48, —18.51, —16.11 and —16.08 ¢V). These energy
differences arise from mutual repulsion between the fluorine

kA ]

(b) 2a, (¢)

3a and (d) 4a, and at 0.025 Hartree for the neutral forms (e) 1b, (f) 2b, (g) 3b and (4) 4b. Blue areas indicate a poten-

tial attractive to a proton.
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atom and the m-system, and from antiperiplanar destabilisa-
tion between the C-F bond and either the nitrogen lone pair
(in 2b) or the O~ atom (in 2a). A striking similarity is also
apparent in the asymmetry of the MEP distribution of 2 and 4
and that calculated for the highly efficient chiral resolving
agent 3,3,3-trifluoro-(9-anthryl)ethanol.® This implies that
n-facial enantioselectivity can play a significant role in the
chiral recognition process, in which an aromatic ring can
indeed represent a two-fold interaction point in the three-
point model.!
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