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A backpropagation neural-network trained with AM1 SCF-MO derived molecular electrostatic potentials (MEPs) for a set 
of 30 substituted imidazoles of known ionisation constant can be used to  predict the pK, o f  imidazole under the 
influence of the a-helix dipole found for histidine-95 in  triosephosphate isomerase; the results agree quantitatively with 
experimental evidence that this residue has an anomalous value such that its catalytic nature is unconventional. 

The catalytic nature of histidine-95 in triosephosphate isome- 
rase is a topic widely debated in the literature.1 Recent 
experimental2 and theoretical3 investigations side with the 
view that the general acid corresponds to neutral rather than 
to protonated imidazole. The reduction in pK, to ca. 4.5 
required to achieve this is attributed to the charge-stabilisation 
effects of the a-helix dipole moment resulting from the 

alignment of dipoles in the peptide bonds.4 A survey compiled 
by HOP suggested that amino acids within three residues of the 
N-terminus of an a-helix may experience ionization constant 
reduction owing to such local electrostatic effects. Likewise, 
residues at the C-terminus have their pK, correspondingly 
raised. Presently, there are several elegant examples of pK, 
shifts of histidine residues lying at either end of helices.5 We 
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Fig. 1 a-Helical fragment his95-ser-glu-arg-arg-ser-tyr-phel02 of 
triosephosphate isomerase (side-chains removed) , superim osed with 
the point charge model of the a-helix dipole of 20 D, 6 1 from the 
centre of the imidazole. The dipole alignment is similar to that of an 
cx-helix if the unfilled spheres are point positive charges and solid 
black spheres are point negative charges. 

report here the use of neural networks trained on quantum 
mechanically derived electrostatic potentials to predict the 
magnitude of such pK, perturbations. 

Traditional quantitative structure-activity relationships 
(QSARs) used to predict pK, values require a set of, e .g .  
Hammett, parameters dependant on the position and nature 
of the substituent. This approach is inapplicable to the pK, of 
a residue perturbed by a local environment since e . g .  an 
a-helix dipole orientation and induced three-dimensional 
polarising effects cannot be expressed as a simple scalar 
parameter. We have recently shown6 that a high level of 
correlation exists in chemically significant spatial regions 
between quantum mechanically derived AM1 and PM3 
molecular electrostatic potentials (MEPs) expressed as a 
three-dimensional grid of values, and the measured pK, of 
para-substituted benzoic acids and anilines. A similar correla- 
tion can be demonstrated at the AM1 level7 for 30 substituted 
imidazoles, covering a pK, range of > 10, and an improved 
correlation is seen if ab initio (3-21G) wavefunctions are 
employed. Thus, calculated MEPs could prove useful as 
general descriptors of the acidity of a molecule in cases in 
which the three-dimensional perturbing environment may not 
correspond to any simple linear free-energy relationship. 
Other existing statistical techniques such as CoMFA (compa- 
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Fig. 2 Predicted pK, values of imidazole obtained from a neural 
network as a function of the displacement and magnitude of a dipole 
vector, orientated as shown in Fig. 1. For dipole 10 D (dotted line), 15 
D (dot-dashed line), 20 D (solid line, squares) and -20 D (solid line, 
open circles). Error bars are the standard deviation of average 
predicted pK, for five differently seeded networks. 

rative molecular field ana1ysis)s have also been used to 
demonstrate the utility of MEPs in this context, but these 
methods all presuppose some form of a non-parametric6 or 
more restrictively a parametric8 relationship between indi- 
vidual grid values of the MEP and the observable quantity. 

Neural networks provide an alternative analytical tool in 
which no assumption is made about any such relationship; 
instead this is derived from the process of training the 
network.9 We adopted here the strategy of training a 
backpropagation neural network‘” using as inputs a relatively 
coarse (2.5 A) grid of electrostatic potential values calculated 
for 30 imidazoles and employing the semiempirical AM1 
Hamiltonian. The network was trained? with 29 of the 

t A three-layer neural network was used in which the input layer had 
144 input nodes for a 2.5 8, grid, with one output node layer. It has 
been suggestedlO that a suitable estimate of the number of nodes in the 
hidden (middle) layer is approximated by the square root of the sum of 
the inputs and outputs. We found nine nodes sufficient. Typically 
training for a single random seed took ca. 15 min on a 4 Mflop 
machine; prediction times are negligible. More hidden layer nodes 
and/or more input nodes ( ~ 3 3 0  for a 2.0 A) increased computing time 
and did not improve the results. The network weights were randomly 
initialised between k0.3, training was then performed with a 
momentum parameter of 0.7 using a fast adaptive learning algorithm 
(superSAB”). This method was found to be a great improvement in 
learning times over the traditional generalised delta rule. lo The 
MOPAC program (V 6.0)14 was used to calculate electrostatic 
potentials. The dipole vector was simulated by using a box of various 
dimensions (Fig. l), with unit charges placed at the vertices. The data 
used to train the network corresponding to the following imidazoles;15 
2-NH2-4,5-Me2 (9.21), 2,4,5-Me3 (8.92), 2-NH2-1-Me (8 .65) ,  2,4-Me2 
(8.50), 2-NHz (8.46), 1,2-Me2 (7.85), 2-Me (7.85), 1,5-Me2 (7.70), 
4-Me (7.56), 1-Me (7.30), 1,4-Me2 (7.20), imidazole (7.00), 5-Br-1- 
Me (5.26), 5-C1-1-Me (4.75), 2-Br-l-Me (3.88), 4-Br (3.88), 2-Br 
(3.85), 5-F-1-Me (3.85), 2-C (3.55), 4-Cl-1-Me (3.10), 4-F (2.44), 2-F 
(2.40), 2-F-1-Me (2.30), 5-N02-1-Me (2.13), 4-F-1-Me (1.90), 4-N02- 
2-Me (0.50), 4-N02 (-0.05), 2-N02-1-Me (-0.48), 4-N02-1-Me 
(-0.53), 2-NO2 (-0.81). 
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imidazole MEPs and used to predict, in turn, each that had 
been left out. Such cross-validation was carried out for five 
different network seeds, establishing that a pK, can be 
predicted to an rms error of 0.8 based on a network trained 
using AM1 derived MEPs. Accordingly, we next calculated 
the MEP of imidazole itself perturbed by dipole vectors of 
various magnitudes orientated as shown in Fig. 1, with the 
positive end closest to the heterocyclic ring, and the pK, 
values were predicted using a network trained on all 30 
imidazoles (Fig. 2). The known crystal structure11 of triose- 
phosphate isomerase contains an a-helix with a dipole of -20 
D, with the positive end placed 6 8, from the centre of the 
imidazole. The pK, perturbation to ~ 4 . 5  predicted for such a 
dipole (Fig. 2) is remarkably similar to that estimated from 
experimental data by Knowles for this enzyme.2 As confirma- 
tion that the orientation of the dipole vector is critical, 
reversing its sign is predicted to increased the imidazole pK, 
(Fig. 2), an effect established both experimentally' and 
theoretically'2 €or e.g. barnase. 

The accuracy of our technique may be improved both by the 
use of more accurate wavefunctions, and by modelling the full 
protein environment using a lattice of partial charges rather 
than as a simple dipole vector, such that higher moment 
perturbations would be included. Even at the current level of 
approximation, however, we believe that the use of electro- 
statically trained neural networks will have useful application 
to the prediction of environmental pK, perturbations in 
enzymes. Indeed, the analysis and prediction of a wide range 
of non-linearly related properties of molecules may be 
possible using such spatially orientated neutral networks in 
chemistry (SONNIC) . 
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