One-step Synthesis of Alkenyloxy–Alkenylcarbene Complexes and the Unprecedented Formation of an η^5 -Allyl-alkene Ruthenium Complex

Didier Pilette, ^a Hubert Le Bozec, * ^a Antonio Romero^b and Pierre H. Dixneuf* ^a

^a Laboratoire de Chimie de Coordination Organique, URA CNRS 415, Campus de Beaulieu, Université de Rennes, 35042 Rennes, France

^b Instituto de Ciencia de Materiales, CSIC, Serrano 113, 28006 Madrid, Spain

Tetramethylbenzene alkenyloxy–alkenylcarbene ruthenium(II) derivatives $[(C_6Me_4H_2)Ru \{=C[O(CH_2)_mCH=CH_2]CH=CH-(CH=CH)_n-R\}CI(PMe_3)]PF_6$ (m = 1, 2; n = 0, 1, 2) are produced in a one-step reaction from $(C_6Me_4H_2)RuCl_2(PMe_3)$ in the presence of propynylic alcohol derivatives $HC=C-C(H)(OH)[(CH=CH)_n-R]$ and ethylenic alcohols, whereas a similar reaction with $HC=C-C(OH)Me_2$ affords a novel η^5 -allyl–alkene ruthenium complex, which is characterised by X-ray crystal structural analysis.

Fischer-type carbene complexes have attracted interest as useful reagents for organic synthesis and as precursors to new functional organometallic compounds.¹ Among them, alkenyl-oxy-carbene complexes have found several useful applications in synthesis such as intramolecular cyclopropanation² and Diels–Alder reactions.³ These complexes are generally prepared either by base-catalysed reaction of ethylenic alcohols with methoxy-carbene complexes.^{2*a*} or by alcoholysis of the unstable acyloxy-carbene complexes.^{2*b*,3} We have recently

developed a new strategy to prepare methoxy-alkenyl-carbene ruthenium complexes, in one step, by activation of prop-2-yn-1-ol derivatives with (arene)ruthenium(μ) complexes in methanol, eqn. (1).⁴ To assess the synthetic potential of this method, we have investigated the activation of prop-2-yn-1-ol derivatives in the presence of unsaturated alcohols. We now report the versatile behaviour of this reaction in the presence of allylic alcohol and we show that (*i*) the ruthenium activation of monosubstituted prop-2-yn-1-ol derivatives constitutes a

straightforward route to new allyloxyalkenyl carbene ruthenium complexes, via addition of allylic alcohol but (ii) when the disubstituted substrate $HC \equiv C - C(OH)Me_2$ is used, the allylic alcohol behaves as a hydrogen-donor reagent in the unprecedented formation of a novel η^5 -allyl-alkene ligand.

Arene ruthenium(II) complex 1 and monosubstituted propynylic alcohols derivatives a and b in 1:6 allylic alcohol: dichloromethane solution gave after 18 h of stirring at room temp. the new allyloxy-propenylcarbene and allyloxy-octatrienylcarbene ruthenium complexes 2a and 2b in 46 and 70% yield, respectively, eqn. (2). By this procedure but-3-envloxystyrylcarbene complex 3c was also prepared in 53% yield from 1, 1-phenylprop-2-yn-1-ol c and but-3-en-1-ol (5 equiv.).† NMR spectra of compounds 2 and 3 showed at δ 297–303 a low field doublet characteristic of the carbon atom, and the ¹H NMR data were diagnostic of *E*-isomers for the alkenylcarbene ruthenium moiety. The formation of complexes 2–3 is likely to result from the addition of the ethylenic alcohol to the monosubstituted allenylidene intermediate [Ru=C=C=CHR]+.4

The reaction of 1 with 2-methylbut-3-yn-1-ol d and allylic alcohol took a different course and led to the unexpected pale-yellow dicationic complex 4 in 47% yield, eqn. (3).† A single-crystal X-ray study was required to establish the

3c: ¹H NMR (300.13 MHz, CD₂Cl₂, 297 K) δ 8.53 (d, 1 H, CH=CH-Ph, ³J_{HH} 14.8 Hz), 7.81–7.77 (m, 2 H, Ph), 7.63–7.48 (m, 3 H, Ph), 7.44 (dd, 1 H, CH=CH-Ph, ³J_{HH} 14.9, ⁴J_{HH} 0.8 Hz), 5.95–5.81 (m, 1 H, CH=CH₂), 5.33–5.22 (m, 2 H, CH=CH₂), 4.81–4.66 (m, 2 H, OCH₂), 2.80–2.72 (m, 2 H, –CH₂–); ${}^{13}C{}^{1}H{}^{1}NMR$ (75.47 MHz, CD₂Cl₂, 297 K) δ 300.03 (d, Ru=C, ${}^{2}J_{PC}$ 20.0 Hz), 168.67 (s, CH=CH-Ph), 134.91, 134.06 (s, Ph), 133.62 (s, CH=CH₂), 130.84, 130.08 (s, Ph), 129.78 (s, CH=CH-Ph), 119.45 (s, CH=CH₂), 107.56, 77.96 (s, OCH₂), 33.84 (s, -CH₂-).

4: ³¹P{¹H} NMR (121.49 MHz, CD₃COCD₃, 297 K) δ 28.86 (s, +PMe₃), -143.20 (sept, PF₆⁻); ¹H NMR (300.13 MHz, CD₃COCD₃, 297 K) δ 4.32 (s, 1 H, -CH₂-Ru), 3.95 (s, 1 H, OH), 3.22-3.08 (m, 1 H, CH₂-PMe₃), 3.02 (s, 1 H, CH₂=), 2.94–2.82 (m, 1 H, CH₂-PMe₃), 2.73 (s, 2 H, C---CH₂C), 2.38 (t, 1 H, CH, ³J_{HH} 3.2 Hz), 2.35 (s, 1 H, $^{-CH_2-Ru}$, 2.09 (d, 1 H, =CH₂, J _{HH} 1.3 Hz), 2.05 (d, 9 H, +PMe₃, 2 _{JPH} 14.5 Hz), 1.37, 1.28 (s, 3 H, Me₂C(OH)-); $^{13}C{^1H}$ NMR (75.47 MHz, CD₃COCD₃, 2.97 K) δ 85.69, 73.25, 71.85 (s, Cq), 59.13 (s, CH_2 -Ru), 54.46 (d, CH, ${}^{2}J_{PC}$ 5.8 Hz), 48.71 (s, = CH_2), 30.83, 28.58 [s, Me₂C(OH)-], 25.47 (s, C-CH₂-C), 23.33 (d, CH₂-PMe₃+, ¹J_{PC} 46.7 Hz), 7.42 (d, +PMe₃, $^{1}J_{PC}$ 53.9 Hz).

5: ³¹P{¹H} NMR (121.49 MHz, CD₃COCD₃, 297 K) δ 28.85 (s, ⁺PMc₃), ⁻ 143.20 (sept, PF₆⁻); ¹H NMR (300.13 MHz, ĆD₃COCD₃, 297 K) & 3.95 (s, 1H, OH), 3.22–3.08 (m, 1 H, CHD-PMc₃), 3.00 (s, 1 H, CHD=), 2.94-2.82 (m, 1 H, CHD-PMe₃), 2.45, 2.38 (t, 1 H, CH, ${}^{3}J_{HH}$ 3.2 Hz), 2.05 (d, 9 H, +PMe₃, ${}^{2}J_{PH}$ 14.5 Hz); ²H NMR (46.07 MHz, McCOMc, 2.97 K) & 4.28 (s, 1 D, -CD₂-Ru), 3.02 (s, 1 D, CHD=), 2.73 (s, 2 D, C-CD₂-C), 2.35 (s, 1 D, -CD₂-Ru), 2.09 (d, 1 D, =CHD), 1.27, 1.20 (s, 3 D, (CD₃)₂C(OH)-). ¹³C{¹H} NMR (75.47 MHz, CD₃COCD₃, 297 K) & 85.58, 72.93, 71.20 (s, Cq), 54.28 (d, CH, ${}^{2}J_{PC}$ 5.8 Hz), 48.37 (t, =CHD, ${}^{1}J_{CD}$ 23.7 Hz).

1221

2b; n = 1, R = CH=CH-CH=CH-Me **3c**; n = 2, R = Ph

structure of 4.‡ As shown in Fig. 1, this molecule consists of a ruthenium atom coordinated by n6-tetramethylbenzene and a new η^5 -allyl-alkene ligand containing a phosphonium group. This ligand can be viewed as resulting from a carbon-carbon coupling between two molecules of alkyne **d**, with concomitant transformations such as dehydration and proton shifts. In addition the crystal structure reveals an unusual metal-toligand migration of the trimethylphosphine.

A remarkable feature is related to the key role of allylic alcohol, which was found to act as a hydrogen source: thus, dehydrogenation of allylic alcohol to acroleine was observed during the reaction, and by using H2C=CHCD2OH partial deuteriation at the CH_2 -PMe₃ position occurred. Labelling experiment with HC=C(CD₃)₂OH was carried out and under similar conditions, compound 5 was isolated in 48% yield, eqn. (3).[†] ¹H and ¹³C NMR spectroscopy confirmed that the

[†] Satisfactory elemental analyses were obtained for derivatives 2a-4. Selected spectroscopic data for: 2b: ¹H NMR (300.13 MHz, CD₂Cl₂, 297 K) δ 8.27 (dd, 1 H, CH=, ${}^{3}J_{HH}$ 13.8, ${}^{3}J_{HH}$ 11.7 Hz), 7.09 (dd, 1 H, CH=, ${}^{3}J_{HH}$ 14.6, ${}^{3}J_{HH}$ 9.7 Hz), 6.79 (d, 1 H, CH=, ${}^{3}J_{HH}$ 13.7 Hz), 6.57 (dd, 1 H, CH=, ${}^{3}J_{HH}$ 14.6, ${}^{3}J_{HH}$ 14.6, ${}^{3}J_{HH}$ 11.7 Hz), 6.47–6.31 (m, 2 H, CH=CH–Me), 6.20–6.06 (m, 1 H, CH=CH₂), 5.57–5.51 (m, 2 H, CH=CH–Me), 6.20–6.06 (m, 1 H, CH=CH₂), 5.57–5.51 (m, 2 H, CH=CH–Me), 6.20–6.06 (m, 1 H, CH=CH₂), 5.57–5.51 (m, 2 H, CH=CH–Me), 6.20–6.06 (m, 1 H, CH=CH₂), 5.57–5.51 (m, 2 H, CH=CH–Me), 6.20–6.06 (m, 1 H, CH=CH₂), 5.57–5.51 (m, 2 H, CH=CH–Me), 6.20–6.06 (m, 1 H, CH=CH₂), 5.57–5.51 (m, 2 H, CH=CH₂), 5. CH=CH₂), 4.99–4.93 (m, 2 H, OCH₂), 1.98 (s, 6 H, $C_6H_2Me_4$), 1.88 (d, 3 H, Me-CH, ³J_{HH} 5.8 Hz); ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297 K) δ 294.07 (d, Ru=C, ²J_{PC} 20.3 Hz), 170.61, 151.87, 143.89 (s, CH=), 132.32 (s, CH=CH₂), 131.43, 130.30, 130.10 (s, CH=), 124.08 (s, CH=CH₂), 78.73 (s, OCH₂), 19.59 (s, Me-CH=)

 $[\]ddagger Crystal data: C_{23}H_{39}O_1F_{12}P_3Ru$, orthorhombic, *Pbca*, a =14.005(4), b = 19.708(6), c = 22.741(3) Å, V = 6202(2) Å³, Z = 8, D_c = 1.614 g cm⁻³, F(000) = 3056, $\mu_c = 7.346$ cm⁻¹. Data collected on a CAD-4 diffractometer with Mo-K α radiation [9000 measured ($2 \le \theta$ $\leq 30^{\circ}$), 3570 used ($I > 3 \sigma(I)$ reflections)]. The structure was solved by heavy-atom methods, the ruthenium atom being identified in the Patterson map and light atoms via subsequent Fourier syntheses. After isotopic refinement [R = 0.10], an empirical absorption correction was applied, the max and min absorption corrections being 1.392 and 0.860, respectively. A further anisotropic full-matrix least-squares refinement on F of the non-hydrogen atoms using unit weights gave R = 0.066. A subsequent difference Fourier syntheses allowed the identification of all atoms (all H-atoms as isotopic fixed) included 361 variable parameters and converged to the unweighted and weighted agreement factors of R = 0.064 and $R_w = 0.061$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 1 Molecular structure of the cation of **4** (ORTEP view). Selected bond distances (Å): Ru–C(1) 2.228(9), Ru–C(2) 2.167(8), Ru–C(3) 2.248(8), Ru–C(6) 2.269(9), Ru–C(8) 2.186(8), C(1)–C(2) 1.430(13), C(2)–C(3) 1.425(11), C(6)–C(8) 1.406(13).

allyl-alkene ligand arose from two molecules of 2-methylbut-3-yn-1-ol: deprotonation of two CD_3 groups of one molecule of alkyne **d** is observed along with a deuterium shift to the terminal carbon of a second molecule of alkyne. Finally, compound **4** was prepared in similar yield in the presence of other primary and secondary alcohols such as cinnamyl alcohol (45%), but-3-en-1-ol (48%), and propan-2-ol (48%) but not by using the tertiary alcohol Bu'OH.

A different reactivity of 2-methylbut-3-yn-1-ol **d** has previously been observed by Selegue⁵ who reported the synthesis of a diruthenium vinylidene-alkylidene complex from the reaction of CpRu(PPh₃)₂Cl and **d**. The present results show another unprecedented type of activation of this propynylic alcohol derivative to produce a phosphonium ligand isoelectronic with a cyclopentadienyl ligand, and represent a good example of strategy vs. screndipity.

Received, 14th May 1992; Com. 2/02523J

References

- 1 K. H. Dötz, H. Fischer, P. Hofmann, F. R. Kreissl, U. Schubert and K. Weiss, *Transition Metal Carbene Complexes*, Verlag Chemie, Decrfield Beach, FL, 1984.
- 2 (a) C. P. Casey and A. J. Shusterman, Organometallics, 1985, 4, 736; (b) B. C. Söderberg and L. S. Hegedus, Organometallics, 1990, 9, 3113.
- 3 K. H. Dötz, Angew. Chem., Int. Ed. Engl., 1984, 23, 587.
- 4 D. Pilette, K. Ouzzine, H. Le Bozec, P. H. Dixneuf, C. E. F. Rickard and W. R. Roper, *Organometallics*, 1992, **11**, 809.
- 5 J. P. Selegue, J. Am. Chem. Soc., 1983, 105, 5921.