Predicted Structures for Ti₈C₁₂ and Si₈C₁₂ Dodecahedron Molecules

Robin W. Grimes* and Julian D. Gale

The Royal Institution of Great Britain, 21 Albemarle St., London W1X 4BS, UK

Quantum cluster calculations confirm the high stability of both M_8C_{12} clusters, their equilibrium geometries being distorted dodecahedrons; the charge transfer within the two cluster types and the electronic structures are shown to be markedly different.

There is now considerable literature concerning the properties of C_{60} and related clusters.¹ In addition to pure carbon materials, clusters have also been formed with a variety of metal ions in association with the cages.^{1–3} Nevertheless, these structures are essentially variations on the C_{60} theme. In this light, the recent work of Guo *et al.*,⁴ who described the formation of Ti₈C₁₂ metallo-carbohedrene clusters, is of particular importance. In that study the Ti₈C₁₂ dodecahedron clusters were formed through the reaction of laser vaporized titanium with a variety of hydrocarbon gases.⁴ The resulting ionized clusters were analysed using mass spectroscopy which revealed a completely dominant so-called 'super magic' peak at 528 atomic mass units. By varying the isotopic composition of the reactants it was possible to establish that the clusters responsible for the peak had the composition Ti_8C_{12} . It was suggested that the dominance of the spectra by this cluster was due to Ti_8C_{12} assuming a particularly stable dodecahedron structure. In this configuration each constituent pentagon ring consists of three carbon and two titanium atoms [see Fig. 1(*a*)]. The stability of the molecular unit is then derived

Fig. 1 Representations of the Ti_8C_{12} clusters. The shaded spheres are carbon, the smaller spheres are Ti.

Fig. 2 Molecular orbital energies and symmetries within the D_{2h} point group: —— occupied, -- unoccupied

from the network of s and p bonds formed between each atom and its three nearest neighbours. As an alternative model for the electronic structure it is possible to consider the cluster as a cube of eight metal-metal bonded titanium atoms surrounded by six C_2 dimers, one adjacent to each of the Ti₈ cube faces [see Fig. 1(*b*)]. The present work suggests that while the clusters behave essentially as single molecular units they do exhibit some features which make this alternative description sometimes useful.

In this study we shall employ quantum cluster methods to examine more closely the structural and electronic properties of the Ti₈C₁₂ cluster and the as yet unknown analogous Si₈C₁₂ cluster. Most calculations were based on the local density approximation (LDA).^{5,6} A high quality double-numerical basis set⁶ was used which included polarization functions: 3d on C and Si; 4p on Ti. Calculations were carried out with a D_{2h} molecular symmetry. For comparative purposes, Hartree– Fock (HF) calculations⁷ at the LDA optimized geometry were also performed to corroborate certain of the results; an sd-Model Potential with a 41G valence contraction was used for Ti⁸ and for C a 6-31G basis.⁹ Both methods have been shown to be highly successful in reproducing the structural and electronic properties of molecular systems.¹⁰

The results of our LDA simulation studies on neutral and singly ionized clusters are presented in Table 1. In Fig. 2 we show the molecular orbital energies for neutral Ti_8C_{12} and Si_8C_{12} . In addition to providing predictions of physical properties, we shall focus our discussion of the results in terms of the insight provided into the molecular electronic structure.

Consider first the structure of the Ti_8C_{12} molecule. Table 1 shows that, as might have been expected, the predicted values of the Ti–C and C–C distances are not equal. This implies that the molecule is a distorted dodecahedron: in fact, the distance from the centre of the C–C bond to the centre of the cube defined by Ti_8 is larger than that required to form a regular

Table 1 Calculated properties of M_8C_{12} clusters and the cluster fragments M_8 and C_2

Clusters:	Ti ₈ C ₁₂	Si ₈ C ₁₂
Distances/Å		
M-M	3.06	3.03
C–C	1.40	1.38
M-C	1.98	1.88
Centre of C_2 to centre of cube plane	0.94	0.74
Mulliken	Ti: 0.75+	Si: 0.13+
charges ^a	C: 0.50-	C: 0.09-
Ground state multiplicity	3	5
Formation energy/eV	-58.62	-46 20
	56.62	40.20
Ionization energy/eV	5.33	6.92
Location of hole in cluster M8:	23	1
C_2 :	$\frac{1}{3}$	0
Fragments (d/Å):		
M–M in M ₈ cube	2.44	2.37
$C-C$ in C_2 dimer	1.27 ^b	1.31c

^{*a*} The Hartree–Fock Mulliken charges for Ti₈C₁₂ were +0.85 and -0.57 respectively. These are expected to alter slightly once the wavefunction is corrected for correlation. ^{*b*} This calculated ground state for C₂⁻ is the experimentally observed ²Σ_g state; the experimental value is 1.31 Å.¹² ^{*c*} This calculated ground state for C₂⁰ is the experimentally observed ³Πu first excited state, which is only 0.09 cV above the actual 1 Σg ground state; the experimental value for ³Π_u is 1.31 Å.¹²

dodecahedron. Perhaps then the molecule should be regarded more as a Ti₈ cube with six associated C₂ molecules as depicted in Fig. 1(*b*). However, if we consider the Mulliken charges we find that in Ti₈C₁₂ both Ti and C are charged (see Table 1). In fact, each C₂ pair assumes a -1 charge although the calculated C-C distance for C₂⁻ is 0.13 Å less than that in Ti₈C₁₂.

If we now turn our attention to the Ti_8C_{12} molecular orbital energies in Fig. 2 it is immediately clear that the C 2s levels form two distinct groups separated by *ca*. 7 eV. Calculations on C₂ show a similar C 2s splitting of *ca*. 9 eV for both C₂⁰ and C₂⁻. The higher occupied levels also form two groups both of which are the result of overlap between C 2p and Ti 3d atomic orbitals; the group nearest the HOMO are slightly more Ti 3d in nature and the lower group are marginally more C 2p like. An identical distribution of orbital energies and triplet ground state was found using the HF method.

What we can conclude from these observations is that the Ti_8C_{12} molecule retains some of the characteristics of its constituent Ti_8 and C_2 components but is essentially a very highly bound molecular species. The high calculated binding energy reported in Table 1 would indeed result in a stable molecular species even under the conditions encountered in a molecular beam. Initial results from HF calculations indicate a very similar high binding energy. In this regard, it is perhaps worth drawing attention to the fact that that since the overall charge of the Ti_8 cube is +6, the Ti_8 cube has a complete set of 10 d electrons. This will certainly contribute to the stability of the molecule.

The results for the structure of the Si₈C₁₂ molecule are very similar to those of Ti₈C₁₂; it is a distorted dodecahedron. This is despite the fact that the Mulliken charges for Si and C are almost zero (see Table 1). Indeed, electronically, Si₈C₁₂ shows marked differences from Ti₈C₁₂. The ground state multiplicity of Si₈C₁₂ is different from that of Ti₈C₁₂. Also, the molecular orbitals form a much more continuous distribution as shown in Fig. 2. This is due to strong Si 3s/C 2s and Si 3p/C 2p overlap. Si₈C₁₂ is clearly a more 'covalent' molecule than Ti_8C_{12} . Nevertheless, Si_8C_{12} is highly stable albeit slightly less stable than Ti_8C_{12} .

Lastly we draw attention to the calculated ionization properties (see Table 1). In particular, although the ionization energies of Ti_8C_{12} and Si_8C_{12} are *ca*. 5 and 7 eV respectively, the hole distribution is markedly different. In Ti_8C_{12} the hole is distributed on both species whereas in Si_8C_{12} it is located only on the Si_8 cube. The ionized energies reported here are for fully relaxed geometries. However, the photoionization energies are only *ca*. 0.04 eV higher in both cases and the relaxation accompanying ionization is not greater than 0.02 Å for any of the characteristic distances described in Table 1.

The work discussed in this communication represents a new direction in carbon cluster research. In particular, compared to conventional fullerenes, the cage incorporates a much higher proportion of species other than carbon. In addition, these clusters are significantly smaller in size. Thus, as suggested by Guo *et al.*,⁴ these materials herald the beginning of a potentially rich new area of investigation. Indeed, as this manuscript was in preparation, new metallo-carbohedrenes have been reported in which the Ti atoms are replaced by V, Zr or Hf.¹²

Received, 4th June 1992; Com. 2/02954E

References

- 1 H. Schwartz, Angew. Chem., Int. Ed. Engl., 1992, 31, 293.
- 2 T. Pradeep, G. U. Kulkarni, K. R. Kannan, T. N. Guru Row and C. N. R. Rao, J. Am. Chem. Soc., 1992, 114, 2272.
- 3 T. Guo, J. Changming and R. E. Smalley, J. Phys. Chem., 1991, 95, 4948.
- 4 B. C. Guo, K. P. Kerns and A. W. Castleman, Jr., *Science*, 1992, 255, 1411.
- 5 DMol version 2.1, BIOSYM Technologies, San Diego, USA, 1991.
- 6 B. Delley, J. Chem. Phys., 1991, 92, 508.
- 7 CADPAC5 developed by R. D. Amos, et. al., Cambridge, UK, 1992.
- 8 Y. Sakai, E. Miyoshi, M. Klobukowski and S. Huzinaga, J. Comput. Chem., 1987, 8, 226.
- 9 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1971, 56, 2257.
- 10 See for example for LDA: B. Delley, *Chem. Phys.*, 1986, **110**, 329; S.-H. Chou, A. J. Freeman, S. Grigoras, T. M. Gentle, B. Delley and E. Wimmer, *J. Chem. Phys.*, 1988, **89**, 5177; and for HF: D. Jayatilaka, R. D. Amos and N. Koga, *Chem. Phys. Lett.*, 1989, **163**, 151.
- 11 K. P. Huber and G. Hertzberg, Molecular Spectra and Structure IV: Constants of Diatomic Molecules, van Nostrand Rheinhold, New York, 1979.
- 12 B. C. Guo, S. Wei, J. Purnell, S. Buzza and A. W. Castleman, Jr., *Science*, 1992, 256, 515.