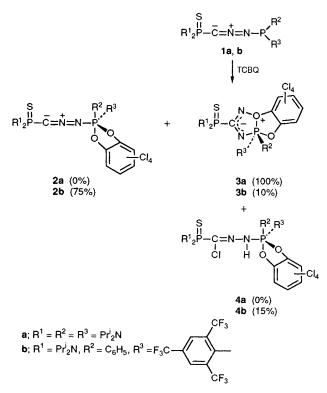
The Surprisingly Facile Dehydrohalogenation of a Hydrazonoyl Chloride into a Stable Phosphorus-substituted Nitrilimine

Florence Castan, ^a Antoine Baceiredo, ^a Françoise Dahan, ^a Norbert Auner^b and Guy Bertrand*^a

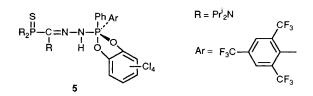
^a Laboratoire de Chimie de Coordination du CNRS, 205, route de Narbonne, 31077 Toulouse Cédex, France ^b Anorganisch-Chemisches Institut, Technische Universität München, 8046 Garching, Germany

Tetrachloro-*o*-benzoquinone reacts with bis(diisopropylamino)thioxophosphoranenitrile *N*-[(phenyl)(2,4,6-trifluoromethylphenyl)phosphanyl]imide **1b** affording the corresponding $\sigma^{5\lambda^5}$ -phosphorus-substituted nitrilimine **2b**; addition of HCl to **2b** leads to hydrazonoyl chloride **4b** which gives back nitrilimine **2b** by simple filtration on silica gel.

A huge variety of hydrazonoyl halides have been described in journals and the patent literature, mainly because of their pesticidal activity.¹ Some of them have been tested as nitrilimine precursors.² Dehydrohalogenations were effected by base; an equilibrium was believed to be established, lying


far on the side of the reactants, and thus nitrilimines were formed in low concentration and trapped.³ Here we report the easy and quantitative conversion of a hydrazonoyl chloride into a stable nitrilimine which is, in fact, the first example of an isolated $\sigma^5\lambda^5$ -phosphorus substituted nitrilimine.

Recently we reported that the reaction of nitrilimine $1a^{4a,b}$ bearing diisopropylamino groups at both phosphorus atoms, with tetrachloro-o-benzoquinone (TCBQ) gave rise to a 'nitrene-oxygen complex' 3a and not to the corresponding five-coordinated phosphorus substituted nitrilimine 2a (Scheme 1).⁵ In the hope of obtaining such a compound, we have started a systematic study on the role of the phosphorus substituents. According to ³¹P NMR spectroscopy, when a stoichiometric amount of TCBQ was added to a tetrahydrofuran (THF) solution of nitrilimine 1b, at -20 °C, a mixture of three products 2b-4b was formed in a 75:10:15 ratio. One of the minor products was isolated, as an air-stable white solid (8% yield), after evaporation and several washings of the residue with acetonitrile, and spectroscopically characterized as the hydrazonovl chloride **4b**. † On the other hand separation of the crude reaction mixture by column chromatography led to the nitrilimine 2b and 'nitrene-oxygen complex' 3b as white solids in 50 and 5% yield, respectively.[†] The structure of 3b was deduced by comparing its physical data⁺ with those of the analogous compound 3a.5 Nitrilimine 2b presented a typical (*i*) IR absorption at 2162 cm⁻¹ (v CNN);⁴ (*ii*) ¹³C NMR doublet at δ 65.53 (CNN, J_{PC} 133.7 Hz);⁴ (*iii*) ³¹P NMR doublet at δ 27.82 ($\lambda^5 \sigma^4 P$, J_{PP} 8.6 Hz).^{4a-c} The phosphorane nature of the second phosphorus atom was obvious from the high field ³¹P NMR chemical shift (δ -24.35).⁶


In contrast to most nitrilimines,^{2,4} **2b** does not react with classical dipolarophiles to give 2 + 3 cycloadducts. However, it readily reacts *via* a 1,3 addition process, at room temperature. With amines, including bulky ones, such as disopropylamine, hydrazone **5** was obtained in fair yield.

Addition of ethereal hydrogen chloride to **2b** gave rise to hydrazonoyl chloride **4b** in quantitative yield. The formation, in low yield, of this product in the reaction of TCBQ with nitrilimine **1b** is thus simply due to the presence of a small amount of HCl, in the commercially available quinone, which adds to the primary formed nitrilimine **2b**. Surprisingly, elimination of hydrogen chloride occurs during the filtration of an ethereal solution of **4b** on silica gel, quantitatively giving back nitrilimine **2b** [eqn. (1)]. Note that, during this treatment, no hydrolysis can be detected which is surprising for both nitrilimine and phosphorane moieties.

$$2\mathbf{b} \xrightarrow{+\mathrm{HCl}}_{\mathrm{SiO}_2(-\mathrm{HCl})} \mathbf{4\mathbf{b}}$$
(1)

Scheme 1 The percentages in parentheses refer to the product distribution as determined by ³¹P NMR spectroscopy

In order to understand the easy elimination of HCl, an X-ray crystal structure determination was performed on hydrazonoyl chloride 4b, ‡ and a portion of its molecular structure is shown in Fig. 1 along with the atom numbering scheme and the pertinent metric parameters. The basic structural features, for the five-coordinated phosphorus atom, conform closely to a square pyramid with the phenyl group [C(7)] located at the apical site; the average axial-basal and cis-basal angles are 102.4 and 86.6°, respectively (the corresponding values for an idealized square pyramid are 105 and 86°).⁷ The least-squares plane for the four basal atoms [O(1), O(2), C(13), N(1)] shows small average out-of-plane variations (0.014 Å). Note that this square-pyramid geometry is unusual for a monocyclic phosphorane.⁸ Of special interest, the value of the N(1)N(2)C(22)P(2) dihedral angle $[176.9(2)^{\circ}]$ is close to that observed for known nitrilimines,⁴ and the Cl(5) and H(N1) are only -0.0319(9) and 0.279(2) Å out of the N(1)N(2)C(22) plane. This geometry combined with the fact that the $H(N_A)$ and Cl(5) are only 2.45 Å apart, could explain the facile elimination of HCl from 4b.

[†] Selected data for 2b, 3b, 4b and 5. All compounds gave satisfactory elemental analyses. **2b**, m.p. 166–167 °C; ¹H NMR (CDCl₃) δ 1.26 (d, J_{HH} 6.8 Hz, 6 H, CH₃CHN), 1.38 (d, J_{HH} 6.8 Hz, 6 H, CH₃CHN), 1.40 (d, J_{HH} 6.8 Hz, 6 H, CH_3CHN), 1.43 (d, J_{HH} 6.8 Hz, 6 H, CH_3CHN), 3.74 (sept d, J_{PH} 20.7 Hz, J_{HH} 6.8 Hz, 2 H, CH_3CHN), 3.75 (sept d, J_{PH} 20.7 Hz, J_{HH} 6.8 Hz, 2 H, CH_3CHN), 3.75 (sept d, J_{PH} 20.7 Hz, J_{HH} 6.8 Hz, 2 H, CH_3CHN), 7.37–7.80 (m, 5 H, C_6H_5) and 8.07 [d, J_{PH} 3.7 Hz, 2 H, $(CF_3)_3C_6H_2$]; ¹³C NMR (CDCl₃) δ 22.13 (d, J_{PC} 2.2 Hz, CH_3CHN), 22.42 (d, J_{PC} 2.6 Hz, CH_3CHN), 23.45 (d, J_{PC} 2.6 Hz, CH_3CHN), 24.45 (d, J_{PC CH₃CHN), 22.75 (s, CH₃CHN), 46.88 (d, J_{PC} 5.8 Hz, CH₃CHN), 47.28 (d, J_{PC} 5.6 Hz, CH₃CHN) and 65.53 (d, J_{PC} 133.7 Hz, C=N); **3b**, m.p. 268–269 °C; ³¹P NMR (THF) δ +48.36 and -32.07 (J_{PP} 5.1 Hz); ^{13}C NMR (CDCl₃) & 22.22 (d, J_{PC} 6.5 Hz, CH₃CHN), 22.29 (s, CH₃CHN), 22.80 (d, J_{PC} 2.5 Hz, CH₃CHN), 24.01 (s, CH₃CHN), 48.00 (d, J_{PC} 5.4 Hz, CH₃CHN), 48.93 (d, J_{PC} 5.5 Hz, CH₃CHN) and 155.40 (d, J_{PC} 177.8 Hz, C=N); **4b**, m.p. 169 °C; ³¹P NMR (THF) δ +61.03 and -22.85 (J_{PP} 4.7 Hz); ¹H NMR (CDCl₃) δ 7.71 (d, J_{PH} 28.9 Hz, 1 H, NH); ¹³C NMR (CDCl₃) δ 23.17 (d, J_{PC} 2.1 Hz, CH₃CHN), 12. 111 (11), C Har((3, 1), 23. 14), (1, 3, 10, 23. 14), (1, 3, 10, 21, 112, CH₃CHN), 23. 14), (1, 3, 10, 24. 20), (1, 2, 10), (1, 10), +69.08 and $-32.25 (J_{PP} 7.3 \text{ Hz})$; ¹H NMR (CDCl₃) δ 8.36 (d, J_{PH} 44.1 Hz, 1 H, NH); ¹³C NMR (CDCl₃) δ 19.47, 21.48 (s, CH₃CHNC), 23.33 (d, J_{PC} 4.5 Hz, CH₃CHNP), 24.27 (s, CH₃CHNP), 24.66 (d, J_{PC} 4.2 Hz, CH₃CHNP), 24.92 (d, J_{PC} 4.0 Hz, CH₃CHNP), 25.27, 25.36 (s, CH₃CHNC), 46.71 (d, J_{PC} 6.1 Hz, CH₃CHNP), 47.01 (d, J_{PC} 5.2 Hz, CH₃CHNP), 48.88, 49.73 (s, CH₃CHNC) and 152.48 (dd, J_{PC} 162.7 and 14.5 Hz, C=N).

[‡] Crystal data for compound **4b**: C₃₄H₃₆Cl₅F₉N₄O₂P₂S, M = 974.95, triclinic, space group *P*1, a = 11.978(2), b = 16.641(2), c = 11.710(2) Å, $\alpha = 108.88(1)$, $\beta = 104.82(2)$, $\gamma = 76.33(1)^\circ$, V = 2105(1) Å³, Z = 2, $D_c = 1.54$ g cm⁻³, $\mu = 5.4$ cm⁻¹. Measurements: CAD4, radiation: Mo-K α ($\lambda = 0.71073$ Å); solution: direct methods. 6963 unique reflections, 5092 observed [$F_o^2 > 3\sigma(F_o^2)$], number of variable: 541 (all non-H atoms anisotropic). R = 0.031, $R_w = 0.032$. Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

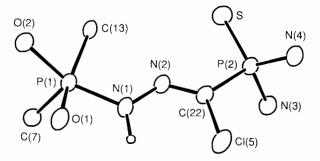


Fig. 1 Simplified ORTEP diagram of 4b, showing 40% probability ellipsoids. Some metric data include: P(1)–O(1) 1.748(2); P(1)–O(2) 1.706(2); P(1)–C(7) 1.794(3); P(1)–C(13) 1.913(3); P(1)–N(1) 1.701(3); N(1)–N(2) 1.354(4); N(2)–C(22) 1.258(4); C(22)–P(2) 1.854(4); C(22)–Cl(5) 1.768(3) Å; N(1)–P(1)–O(1) 81.6(1); N(1)–P(1)–O(2) 149.4(1); N(1)–P(1)–C(7) 110.5(1); N(1)–P(1)–C(13) 93.2(1); O(1)–P(1)–O(2) 88.0(1); O(1)–P(1)–C(7) 96.8(1); O(1)–P(1)–C(13) 153.5(1); O(2)–P(1)–C(7) 99.2(1); O(2)–P(1)–C(13) 83.5(1); C(7)–P(1)–C(13) 103.4(1); P(1)–N(1)–N(2) 120.9(2); P(1)–N(1)–H 119.6; N(2)–N(1)–N(1)–N(2) 20.9(2); P(2) 120.6(3); N(2)–C(22)–P(2) 119.4(2); Cl(5)–C(22)–P(2) 120.0(2)°.

All attempts to rearrange nitrilimine **2b** into compound **3b** failed, strongly suggesting that this is not the intermediate in the formation of the 'nitrene-oxygen complex.' Further studies are now under way to elucidate the mechanism leading to **3b**.

We thank the CNRS and the Deutsche Forschungsgemeinschaft for financial support.

Received, 20th March 1992; Com. 2/01473D

References

- H. Ulrich, *The Chemistry of Imidoyl Halides*, Plenum Press, New York, 1968; E. Enders, 'Methoden zur Herstellung und Umwandlung von Arylhydrazinen und Arylhydrazonen,' in *Methoden der Organischen Chemie*, ed. E. Müller, vol. 10/2, 4th edn., Thieme, Stuttgart, 1967.
- 2 P. Caramella and P. Grünanger, in *1,3-Dipolar Cycloaddition Chemistry*, ed. A. Padwa, Wiley-Interscience, New York, 1984; R. Huisgen, *Angew. Chem.*, *Int. Ed. Engl.*, 1963, **2**, 565, 633.
- 3 H. S. Clovis, A. Eckell, R. Huisgen and R. Sustmann, *Chem. Ber.*, 1967, **100**, 60; A. F. Hegarty, M. P. Cashman and F. L. Scott, *J. Chem. Soc.*, *Perkin Trans.* 2, 1972, 44; *Chem. Commun.*, 1971, 684.
- 4 (a) G. Sicard, A. Baceiredo and G. Bertrand, J. Am. Chem. Soc., 1988, **110**, 2663; (b) M. Granier, A. Baceiredo, Y. Dartiguenave, M. Dartiguenave, M. J. Menu and G. Bertrand, J. Am. Chem. Soc., 1990, **112**, 6277; (c) M. Granier, A. Baceiredo and G. Bertrand, Angew. Chem., Int. Ed. Engl., 1988, **27**, 1350; (d) M. P. Arthur, A. Baceiredo and G. Bertrand, Organometallics, 1991, **10**, 3205; (e) M. Granier, A. Baceiredo, V. Huch, M. Veith and G. Bertrand, Inorg. Chem., 1991, **30**, 1161; (f) F. Castan, A. Baceiredo, D. Bigg and G. Bertrand, J. Org. Chem., 1991, **56**, 1801; (g) F. Castan, A. Baceiredo and G. Bertrand, Angew. Chem., Int. Ed. Engl., 1989, **28**, 1250.
- 5 M. Granier, A. Baceiredo, H. Grützmacher, H. Pritzkow and G. Bertrand, Angew. Chem., Int. Ed. Engl., 1990, 29, 659.
- 6 CRC Handbook of Phosphorus-31 NMR Data, ed. J. C. Tebby, CRC Press, Boston, 1990.
- 7 R. R. Holmes and J. A. Deiters, J. Am. Chem. Soc., 1977, 99, 3318.
- 8 R. R. Holmes, Acc. Chem. Res., 1979, 12, 257.