Chemical Communications

Number 18 1992

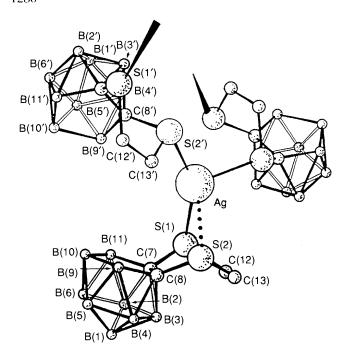
Silver Coordination to *exo*-Dithio-7,8-dicarba-*nido*-undecaborate Derivatives. Sulfur to Metal and Open Face to Metal: Two Ways of Bonding

Francesc Teixidor,* ª José A. Ayllón, ª Clara Viñas, ª Jordi Rius, ª Carles Miravitlles ª and Jaume Casabó* b ª Institut de Ciència de Materials de Barcelona and b Department de Química, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola, 08193 Barcelona, Spain

exo-Dithiocarbaborane compounds display two different silver coordinations (Ag-S and AgC₂B₃) depending on the length of the exo-cluster chain.

Our research on the coordination chemistry of macrocyclic derivatives of exo-dithiocarbaborane compounds¹ has shown the singularity of their chemistry, which is modulated by the length of the exo-cluster (S,S') macrocyclic chain.^{2,3} Examples of silver coordination to boranes are rare. Muetterties and coworkers⁴ found that $B_{10}H_{10}^{2-}$ and $B_{12}H_{12}^{2-}$ formed waterinsoluble salts with polarizing cations (Ag^+, Cu^+, Hg^{2+}) .⁵ Other notable examples are [{(Ph₃P)AgC₂B₈H₁₁}₂],⁶ AgCB₁₁H₁₂·2C₆H₆,⁷ (Ph₃P)₂AgBH₄ or (Ph₃P)₃AgHBH₂-CO₂Et.⁸ However, little is known about complex derivatives of $C_2B_9H_{12}^-$. In 1968⁹ it was reported that treatment of $C_2B_9H_{12}^-$ with AgNO₃ produced the black complex

Fig. 1 Schematic view of **2**, representing the sequence ··· Ag-S-carb-S-(ScarbS)Ag-S-carb-S-Ag(ScarbS)-S-carb-S-Ag···


 $[(C_2B_9H_{11})_2Ag]^{2-}$, but doubt was later cast on the nature of this solid.¹⁰

Two different modes of Ag^+ coordination to exo-dithiocarbaborane are reported here, Ag-S and Ag-open face (C_2B_3). When the number of links in the exo-cluster cycle is six, Ag-S coordination is observed, but when the number is five, a C_2B_3 -Ag coordination is seen.

The reaction of $[NMe_4][7,8-\mu-(SCH_2CH_2S)-7,8-C_2B_9H_{10}]$ 1 with AgNO₃, in solvents such as EtOH, MeOH, H₂Oacetone, produces a fine precipitate of silver metal. However, compound $[NMe_4][Ag\{7,8-\mu-(SCH_2CH_2S)-7,8 C_2B_9H_{10}$ ₂] **2**† is obtained when {7,8- μ -(SCH₂CH₂S)-7,8- $C_2B_9H_{10}$ and AgNO₃ are mixed with $C_0(NO_3)_2 \cdot 6H_2O$ in water-acetone in a 2:1:1 molar ratio, respectively. Resonances with the ratio 2:1:2:2:1:1 are observed in the ¹¹B{H} NMR spectrum. The chemical shifts are comparable with those found in the free ligand, thus indicating no boron-cage to metal interaction. The X-ray analysis of 2‡ shows the chain nature of the compound (Fig. 1), which can be schematically represented as ...Ag-S-carb-S-(ScarbS)Ag-Scarb-S-Ag(ScarbS)-S-carb-S-Ag..., where (ScarbS) represents a chain pendant fragment. Fig. 2 shows the fragment -S-carb-S-Ag(ScarbS)-S-carb-S-. The Ag is three-coordinated

† Spectroscopic data for [NMe₄][Ag{7,8- μ -(SCH₂CH₂S)-7,8-C₂B₉H₁₀}₂] **2**: IR (KBr) ν (B–H)/cm⁻¹ 2587, 2550 and 2538. ¹H NMR (in [²H₆] acetone; chemical shifts referenced to Me₄Si): δ 3.45, s, —, 12; 3.30–3.05, m, —, 8; –2.6, b, —, 1. ¹¹B{H}NMR (in acetone; chemical shifts, referenced to external BF₃·OEt₂, upfield of the reference are designated as negative): δ –6.6 (2), –8.0 (1); –15.5 (2), –18.0 (2), –31.9 (1), –35.4 (1).

‡ Crystal data: space group $P2_12_12_1$; Z=4; a=7.710(3), b=13.437(3), c=28.127(4) Å; V=2913.9 ų. Data collection parameters: maximum 2θ range 50° , $\mu(\text{Mo-K}\alpha)=9.87~\text{cm}^{-1}$, $\lambda=0.71069$ Å. The structure was solved with the OMEGA tangent formula (J. Rius and C. Miravitlles, Acta Crystallogr., Sect. A., 1989, 45, 490) and refined with SHELX76 (G. M. Sheldrick, SHELX76. Program for crystal structure determination. Univ. of Cambridge England 1978) to R=0.049 for 1776 independent reflections having $I>2.5\sigma$. A full report of the structure determination will be given later. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 2 Structure of **2** (hydrogens and the cation omitted; primes do not indicate, in this case, a symmetry related fragment). The fragment -S-carb-S-Ag(ScarbS)-S-carb-S- of the general sequence ··· Ag-S-carb-S-(ScarbS)Ag-S-carb-S-Ag(ScarbS)-S-carb-S-Ag··· is represented. Selected intramolecular distances (Å) angles (°) are as follows: S(1)-Ag, 2.520(4); S(2)-Ag, 2.939(4); S(2')-Ag, 2.546(3); S(1')-Ag, 2.600(3). S(2)-Ag-S(1), 70.5(1); S(2')-Ag-S(2), 101.4(1); S(2')-Ag-S(1), 148.1(1).

to one S of three carbaborane units (2.52; 2.54 and 2.60 Å) with a further close separation of 2.94 Å. Consequently, the Ag is trigonally coordinated with an additional weak S-Ag interaction, due to the chain's pendant carborane. This represents the first example of a non-symmetrical chelating mode found in these dithio compounds.

Treatment of [NMe₄]{7,8- μ -(\$CH₂S)-7,8-C₂B₉H₁₀} **3** with AgNO₃ in water-acetone: 1:3, produces a yellow precipitate.§ The IR spectrum shows absorptions at the B–H stretching regions from 2598 to 2450 cm⁻¹, which differs from that of the free ligand. The ¹H NMR spectrum does not display the typical B–H–B absorption at δ ca. -2.5. This resonance is very informative in $[C_2B_9H_{10}RR']^{1-}$ chemistry. ¹¹ Its absence supports a reformulation of the carbaborane ligand as the dianion $[7,8-\mu$ -(SCH₂S)-7,8-C₂B₉H₉]²⁻. However, it is highly unlikely that such species exist in protic solvents (H₂O). To our understanding, an Ag-C₂B₃ coordination is in accordance with the spectroscopic data, and the ionic species $[Ag\{7,8-\mu$ -(SCH₂S)-7,8-C₂B₉H₉]]¹⁻ is postulated. The analyses agree well with the formulation $[Ag_2\{7,8-\mu$ -(SCH₂S)-7,8-C₂B₉H₉]] **4**. In the solid state the compound is

stable, even when exposed to light, but decomposes quite rapidly in solution. Highly coordinating solvents such as dimethylformamide, pyridine or dimethyl sulfoxide (DMSO) are required to dissolve the compound. The ¹¹B-{H} NMR spectrum of 4 is very different from that of the free ligand and varies from one solvent to another, making good comparison with other spectra of 'structurally similar complexes' difficult e.g. the order of the signals is 1:2:4:2 for Me₂SO, but 2:3:2:1:1 for tetrahydrofuran-pyridine 1:1. An attempt to compare this ¹¹B NMR spectra with others in the literature to support the Ag-open face coordination is difficult, owing to the thioether and metal influence on the resonances' distribution and position. When Lewis bases are added to a suspension of 4 in acetone, tetrahydrofuran or CH₂Cl₂, in which the compound is insoluble, the chain is broken and discrete species can be found, e.g. with PPh3 the complex $[Ag(PPh_3)_4][Ag(7,8-\mu-(SCH_2S)-7,8-C_2B_9H_9)(PPh_3)]$ 5 is produced.¶

The authors are grateful for CICYT (Spain) grant No. PB87-036Y.

Received, 6th March 1992; Com. 2/01240E

References

- 1 F. Teixidor and R. W. Rudolph, J. Organomet. Chem., 1983, 241, 301; C. Viñas, W. M. Butler, F. Teixidor and R. W. Rudolph, Organometallics, 1984, 3, 503; C. Viñas, W. M. Butler, F. Teixidor and R. W. Rudolph, Inorg. Chem., 1986, 25, 4369; F. Teixidor, A. M. Romerosa, J. Rius, C. Miravitlles, J. Casabó, C. Viñas and E. Sánchez, J. Chem. Soc., Dalton Trans., 1990, 525; F. Teixidor, C. Viñas, J. Rius, C. Miravitlles and J. Casabó, J. Inorg. Chem., 1990, 29, 149.
- 2 F. Teixidor, J. Casabó, C. Viñas, E. Sánchez, Ll. Escriche and R. Kivekäs, *Inorg. Chem.*, 1991, 30, 3053.
- 3 F. Teixidor, A. Romerosa, C. Viñas, J. Rius, C. Miravitlles and J. Casabó, *J. Chem. Soc.*, *Chem. Commun.*, 1991, 192.
- 4 E. L. Muetterties, J. H. Balthis, Y. T. Chia, W. H. Knoth and H. C. Miller, *Inorg. Chem.*, 1964, 3, 444; W. H. Knoth, H. C. Miller, J. C. Saver, J. H. Bathis, Y. T. Chia and E. L. Muetterties, *Inorg. Chem.*, 1964, 3, 159.
- R. D. Dobrott and W. N. Lipscomb, J. Chem. Phys., 1962, 37, 1779; J. T. Gill and S. J. Lippard, Inorg. Chem., 1975, 14, 751.
- 6 H. M. Colquhoun, T. J. Greenhough and M. G. H. Wallbridge, J. Chem. Soc., Chem. Commun., 1980, 192.
- 7 K. Shelly, D. C. Finster, Y. J. Lee, W. R. Scheidt and C. A. Reed., J. Am. Chem. Soc., 1985, 107, 5955.
- 8 (a) J. C. Bommer and K. W. Morse, J. Am. Chem. Soc., 1974, 96, 6222; (b) Inorg. Chem., 1979, 18, 531; (c) Inorg. Chem., 1980, 19, 587.
- V. A. Battsev and V. I. Stanko, Zh. Obshch. Khim., 1968, 38(12), 2820.
- 10 Carboranes, ed. R. N. Grimes, Academic Press, 1970.
- 11 J. A. Long, T. B. Marder, P. E. Behnken and M. F. Hawthorne, J. Am. Chem. Soc., 1984, 106, 2979.

§ Spectroscopic data for [Ag₂{7,8-μ-(SCH₂S)-7,8-C₂B₉H₉}] **4**: IR (KBr) $v(B-H)/cm^{-1}$ 2598, 2565, 2539, 2477 and 2450. ¹H NMR ([²H₆]DMSO; chemical shifts referenced to Me₄Si: 4.22, d, 11.4, 1; 3.66, d, 11.4, 1. ¹¹B{¹H} NMR (in DMSO; chemical shifts, referenced to external BF₃·OEt₂, upfield of the reference are designated as negative): -10.9 (1), -16.7 (2); -24.7 (4), -36.1 (2).

¶ Spectroscopic data for [Ag(PPh₃)₄][Ag(7,8- μ -(SCH₂S)-7,8-C₂B₉H₉)(PPh₃)] **5**: IR (KBr) v(B-H)/cm⁻¹ 2520. ¹H NMR (in CD₂Cl₂, chemical shifts referenced to Me₄Si: 7.28–7.12, m, —, 75; 3.39, d, 10.1, 1; 3.21, d, 10.1, 1. ¹¹B{H} NMR (in CH₂Cl₂; chemical shifts, referenced to external BF₃·OEt₂, upfield of the reference are designated as negative): -19.2 (3), -21.2 (4); -27.4 (1), -40.6 (1).