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The electrochemical behaviour of the hydride complexes [ReCIH(NCR)(dppe)2][BF,] (R = Ph, 4-CIC6H4 or 4-FC6H,; 
dppe = P ~ ~ P C H Z C H ~ P P ~ ~ ) ,  prepared by protonation of the corresponding nitrile compounds [ReCI(NCR)(dppe)z], has 
been studied by cyclic voltammetry (CV) and controlled-potential electrolysis in aprotic media, at  a Pt electrode; they 
undergo anodically induced deprotonation and cathodically induced dehydrogenation, the former involving an overall 
bimolecular process as indicated by CV simulation techniques. 

The relevance o f  transition metal-hydrogen bonds in coordi- 
nation chemistry has been well recognized for a long time,' 
particularly in catalysis and in biological systems, and electro- 
chemical methods should, in principle, provide convenient 
probes for the study of their activation by electron transfer. 
However, in contrast to the well developed chemistry of 
transition-metal hydride complexes, electrochemical investi- 
gation on them has not yet been adequately explored, 
although a few promising studies have been quoted, particu- 
larly in terms of electroactivation of such bonds with applica- 
tion, inter a h ,  in the production of hydrogen (e.g. from water, 
by proton reduction at a metal centre2.3) and in the induction 
of a further versatile chemical reactivity.4--7 

Therefore, and also in pursuit of our interest in the study of 
the activation of small C- or N-unsaturated molecules by 
electron-rich transition metal centres,s we have initiated the 
electrochemical investigation of hydride complexes with 
such types of ligands, in particular tram-[FeH( CNR)- 
(dppe)?][BF4] (R = alkyl or aryl),' and now we report the 
results obtained with [ReC1H(NCR)(dppe)2][BF4] I+  (R = 
Ph, 4-C1C6H4 or  4-FCBH4). These seven-coordinate com- 
plexes have been obtained by reaction of [Et20H][BF4] with 
the appropriate parent neutral compounds, cis-[ReCl(NCR)- 
( d p ~ e ) ~ ] ,  in CH2C12, which, alternatively (depending, e.g. ,  on 
the experimental conditions and on the electronic properties 
of R), can undergo (3-protonation at the nitrile ligandg to give 
methyleneamido complexes (R = 4-OMePh). 

The electrochemical behaviour of complexes 1+ has been 
studied by CV in the 300 V s-1-50 mV s-1 scan rate range, at 

Pt disc electrodes (with 500 or  125 pm diameter), in 0.3 
mol dm-3 [Bu4N][BF4]-tetrahydrofuran (thf) (or CH2C12). 

They undergo anodic and cathodic processes which, at 
sufficiently high scan rates, are both chemically reversible and 
involve a single-electron transfer, at Eo(12+/l+) = 0.7-0.9 V 
and E"(1+/1) = -1.0 to -1.2 vs. saturated calomel electrode 
(SCE) respectively. However, upon lowering the scan rate, a 
pronounced decrease of the reversible character is observed 
for both waves and, moreover, the anodic one then tends to a 
two-electron irreversible process with proton loss as indicated 
by acid-base titration of the electrolysed solution obtained 
upon controlled potential electrolysis at the anodic wave. 

Moreover, it is noteworthy to mention (see below) that an 
increase of the concentation of 1+ results in an increase of the 
scan rate required to achieve chemical reversibility in oxida- 
tion. 

Typical cyclic voltammograms are depicted in Fig. 1 (for I + ,  

As a result of the anodic oxidation of the hydride complexes 
1 + ,  the novel species 2*+ is formed as detected by the 
appearance of the new reversible waves at E0(22+/2+)  = 0.71 
and E0(2+/2)  = -0.31 V (for 1 + ,  R = 4-ClC6H4). Moreover, 
the same set of waves at E"(2+/2) and E"(22+/2+), is also 
observed upon cathodic reduction of l+ .  

However, the reduction wave of 1+ was almost chemically 
reversible, leading to the detection of relatively small waves 
for the oxidation of 2 and the derived 2 f .  Although the degree 
of chemical reversibility of the 1+ reduction wave was almost 
total for each run even at small scan rates (0.1 V s-I), we 

R = 4-ClChH4). 
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Fig. 1 Cyclic voltammograms for 0.6 mmol dm-3 [ReHCl(NCR)- 
( d p ~ e ) ~ ] [ B F ~ ]  1+ (R = 4-ClC6H4) (a)-(c) and 0.8 mmol dm-3 
tr~ns-[ReCl(NCR)(dppe)~] 2 (R = 4-C1C6H4) (d) ,  in 0.3 mol dm-3 
[Bu4N][BF4]-CH2C12, at a Pt electrode (scan rate = 100 mV s-1; 
potential in V vs. SCE) 

observed that the exact value of i$i;. (ratio of the cathodic to 
the anodic peak currents) was critically dependent on the 
particular set of conditions. Nevertheless, the same species 2 is 
obtained quantitatively as the reduction product of prepara- 
tive electrolysis of 1+ with the consumption of one Faraday 
per mole. It is also generated upon treatment of a solution of 
1+ with a base, such as [Bu4N]OH; it was isolated and shown 
to undergo two successive single-electron reversible processes 
at the expected potentials, Eo(2+/2) and E0(22+/2+) 
[Fig. l(d)]. 

On the basis of IR data, NMR spectroscopy and elemental 
analysis, species 2, obtained either upon cathodic reduction of 
1+ or upon deprotonation of the latter by base, was shown to 
be the neutral nitrile complex trans-[ReCl(NCR)(dppe)2]. 10 

Moreover, the corresponding dioxidized form of trans- 
[ReCl(NCR)(d~pe)~]2+ 22+, is the product, formed quantita- 

tively, of the preparative scale oxidation of 1+ which was 
found to obey the balance eqn. (1). 

ReH+ - 2e --+ Re2+ + H+ (1) 
1+ 22+ 

The mechanism of this reaction was investigated by 
simulation (programme CVSIM11) of the voltammograms at 
different scan rates and various concentrations of l+. 

A classical reversible ECE12 (electron transfedchemical/ 
electron transfer) mechanism [eqns. (2)-(4)] was shown to 
lead to a poor agreement with the experimental data, mainly 
because it involves a first-order behaviour in the rhenium 
complex, in contradiction with the observation of an increased 
irreversibility of the oxidation wave upon increasing the ReH+ 
concentration. 

ReH+ - e $ ReH2+ (2) 

(3) 

Re+ - e Re2+ (4) 

ReH2+ $ Re+ + H +  

An almost perfect agreement between the experimental and 
the simulated voltammograms was obtained upon assuming a 
DISP2-type mechanism12 [eqns. (5)-(7)], where the oxidation 
of Re+ is performed homogeneously, by electron transfer to 
ReH2+, rather than by the electrode. Such a behaviour, via a 
DISP2 type-mechanism instead of an ECE one, is consistent 
with previous theoretical considerations. 12 The simulations 
could not afford the independent values of K and k in the 
above mechanism owing to the steady state chemical behav- 
iour of Re+. Yet the apparent overall rate constant, k,, = 
kK[B]/[HB+] could be determined. In agreement with the 
formulation of the above mechanism, k,, was shown to 
increase with the basicity of the medium; thus, k,, = 100,250 
and 400 dm3 mol-1 s-1 were determined respectively in 
CH2C12, thf and thf with 4 equiv. pyridine added. 

ReH+ - e ReH2+ ( 5 )  
1+ 1 2 +  

K 
ReH2+ + B  $Re+  + HB+ (6) 

2+ 

k 
Re + ReH2+ + Re2+ + ReH+ (7) 

22+ 

It is worth noting that the same series of experiments 
showed that the basicity of the medium had no effect on the 
reduction wave of 1+. However, in view of the above- 
mentioned difficulties associated with the exact determination 
of the chemical reversibility of this cathodic wave, no reliable 
mechanism could be established. Nevertheless, the quantita- 
tive formation of 2 upon preparative scale cathodic electrolysis 
of 1+ indicates that its reduction involves a dehydrogenation 
reaction. 

The rupture of a metal-hydride bond by electrochemical 
oxidation has been reported for a number of transition metal 
complexes,6~13 and shown to involve either H+ extrusion from 
the oxidized metal centre or the formal transfer of H to an 
acceptor; often, further reactivity occurs, involving, e.g., a 
reductive elimination, a metal-metal bond formation (dimeri- 
zation) ,4 a disproportionation5 or a further oxidation followed 
by a nucleophilic attack.7 However, in these systems, the 
mechanisms of the proton loss have usually not been studied in 
detail. Our studies indicate that this reaction can involve a 
bimolecular process and be considerably more complex than a 
simple intramolecular M-H bond cleavage; moreover, we 
have also shown that dehydrogenation occurs upon reduction, 
although the mechanism could not be established in this case. 
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