A New Xanthone Synthesis from the Diels-Alder Reaction between 2-Vinylchromen-4-ones and Cyclopentanone Enamine

Roy M. Letcher* and Tai-Yuen Yue
Department of Chemistry, University of Hong Kong, Bonham Road, Hong Kong

The reaction between 2-vinylchromen-4-ones and 1-pyrrolidinylcyclopentene give substituted 2,3,3a,4-tetrahydrocyclopenta[a]xanthen-11(5H)-ones; the stereochemistry of the product shows that the initial step in the reaction may be considered to be an exo-addition Diels-Alder with inverse electron demand.

2-Styrylchromen-4-ones have been used to synthesise xan-then- $9(9 H)$-ones in very low yields via photochemical cyclisations, ${ }^{1-3}$ and via Diels-Alder reactions with maleic anhydride and N-arylmaleimides. ${ }^{4.5}$ These Diels-Alder reactions would appear to involve a diene and a dienophile which are both electron deficient. A more favourable reaction however would be expected between the electron deficient diene in 2 -vinylchromen-4-ones and an electron rich dienophile such as an enamine.
We have now carried out such reactions by refluxing in 95% ethanol, equimolar amounts of the enamine 1 -pyrrolidinylcyclopentene 1 and a variety of (E)-2-vinylchromen-4-ones $\mathbf{2 a - d}$. In each case a crystalline product with stoichiometric formula ($1+2-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}$) was obtained in $50-60 \%$ yield. All products exhibited very similar spectra (e.g. 3a ${ }^{\dagger}$) showing that they have analogous structures; all showed typical IR and UV spectra for a chromone and one alkenic hydrogen (at $c a . \delta_{\mathrm{H}}$ 7.1) in their ${ }^{1} \mathrm{H}$ NMR spectra. In the case of $\mathbf{3 a}$ this clearly

[^0]shows that the double bond is not in the position expected from an unrearranged Diels-Alder product, and is further confirmed by the methyl group (at $\delta_{\mathrm{H}} 1.22$) appearing as a doublet ($J 6.8 \mathrm{~Hz}$). In each case, structure elucidation was accomplished using 1D and 2D NMR techniques, the results of which are discussed below for 3a. Spectral editing of the ${ }^{13} \mathrm{C}$ NMR spectra was achieved by the DEPT analysis which for the product from 1 and $\mathbf{2 a}$ revealed three methines and two methylenes. The ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum showed that the

1
2
3

a; $R=P h, R^{1}=M \theta, R^{2}=R^{3}=H$
b; $R=P h, R^{1}=R^{2}=R^{3}=H$
c; $R=M \theta, R^{1}=R^{2}=R^{3}=H$
d; $R=$
 $R^{1}=R^{2}=R^{3}=H$
e; $R=P h, R^{1}=H, R^{2}=M e R^{3}=\mathrm{Br}$
three methine signals, $\delta_{\mathrm{c}} 54.9,50.0$ and 41.4 , correlate with δ_{H} $2.44,3.05$ and 3.22 , respectively; one methylene was at $\delta_{c} 32.8$ ($\delta_{\mathrm{H}} 2.46$), whilst the other ($\delta_{\mathrm{c}} 29.0$) correlated with two well separated proton signals ($\delta_{\mathrm{H}} 1.29$ and 1.71). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, aided by spin-decoupling experiments, revealed the following connections: Me ($\delta_{\mathrm{H}} 1.23$)- $\mathrm{CH}\left(\delta_{\mathrm{H}}\right.$ $3.22)-\mathrm{CH}\left(\delta_{\mathrm{H}} 2.44\right)-\mathrm{CH}\left(\delta_{\mathrm{H}} 3.05\right)-\mathrm{CH}_{2}\left(\delta_{\mathrm{H}} 1.71\right.$ and 1.29$)-$ $\mathrm{CH}_{2}\left(\delta_{\mathrm{H}} 2.46\right)$-alkenic $\mathrm{H}\left(\delta_{\mathrm{H}} 7.11\right)$. This leads unambiguously to structure 3a for the product from 2a, and using similar experiments and arguments, to $\mathbf{3 b} \mathbf{b} \mathbf{d}$ for the products from $\mathbf{2 b} \mathbf{d}$, respectively. The stereochemistry of the cyclohexene ring was established from ${ }^{1} \mathrm{H}$ NMR spin-decoupling experiments. Irradiation of the methyl signal resulted in the multiplet at $\delta_{\mathrm{H}} 3.22$ collapsing to a doublet (with $J 10.7 \mathrm{~Hz}$) revealing the $J_{4,5}$ coupling constant. $4-\mathrm{H}$ was similarly identified (at $\delta 2.44$) and shown to be a triplet (superimposed on the broad $\mathrm{C}-2 \mathrm{CH}_{2}$ group) with a coupling constant approximately equal to that of $J_{4.5}$, thus revealing $J_{3 a, 4}$. From the Karplus equation these coupling constants indicate a large dihedral angle, or trans-diaxial relationship for both $5-\mathrm{H} / 4-\mathrm{H}$ and $4-\mathrm{H} / 3 \mathrm{a}-\mathrm{H}$. Consequently the stereochemistry of the C-ring is established with all three substituents (at C-5, C-4 and $\mathrm{C}-3 \mathrm{a}$) being in the more stable equatorial position. Furthermore, the trans-stereochemistry at C-3a, C-4 is consistent with a Diels-Alder reaction having occurred via an exo-addition.
These data suggest that the formation of the xanthones 3a-d is via an initial Diels-Alder reaction with inverse electron demand leading to a cis-fused C/D ring intermediate which rearranges (1,3 -hydrogen shift from C -11a to $\mathrm{C}-5$) to give the
chromone ring and eliminates pyrrolidine (or water if the iminium ion had hydrolysed) by presumably a trans-elimination involving $1-\mathrm{H}$.

In an endeavour to test the generality of the reaction with a more sterically hindered 2 -vinylchromen-4-one, 2e was treated with enamine 1. The product was found to be quite different from 3, and was shown to be $\mathbf{4}$ from an X-ray crystallographic structure elucidation, ${ }^{6}$ which was needed to place unambiguously the cyclopentanone substituent on the ethyl chain. Compound $\mathbf{4}$ is presumably obtained via a Michael addition of the enamine giving an iminium ion which is hydrolysed. The isolation of $\mathbf{4}$ suggests a possible alternative step-wise mechanism for the formation of 3 .
The generality of this novel enamine-2-vinylchromen-4-one reaction is being studied.

Received, 11th May 1992; Com. 2/02422E

References

1 K. A. Kumar and G. Srimannarayana, Indian J. Chem., Sect. B, 1980, 19, 615.
2 I. Yokoe, K. Higuchi, Y. Shirataki and M. Komatsu, Chem. Pharm. Bull., 1981, 29, 2670.
3 B. V. Maliaiah, G. L. D. Krupadanam and G. Srimannarayana, Indian J. Chem., Sec. B, 1985, 24, 862.
4 A. Schönberg, A. Mustafa and G. Aziz, J. Am. Chem. Soc., 1954, 76, 4576.
5 R. M. Letcher and T. Y. Yue, J. Chem. Res., 1992, 248.
6 R. M. Letcher, K. K. Cheung and T. Y. Yue, Acta Crystallogr., Sect. C., in the press.

[^0]: + Satisfactory analytical and spectroscopic data have been obtained for all new compounds. Selected data 3a: m.p. 189-191 ${ }^{\circ} \mathrm{C}$; IR (Nujol) $\mathrm{v} / \mathrm{cm}^{-1} 1640 ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{dd}, 1 \mathrm{H}, J 7.8$ and $1.3 \mathrm{~Hz}, 9-\mathrm{H}), 7.62(\mathrm{t}, 1 \mathrm{H}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.42-7.20(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH})$, 7.11 (brs, 1 H, 1-H), 3.22 (m, 1 H, 5-H), 3.05 (m, 1 H, 3a-H), 2.45 (m, $\left.3 \mathrm{H}, \mathrm{CH}_{2}-2+4-\mathrm{H}\right), 1.71\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.29\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right)$ and 1.23 (d, $3 \mathrm{H}, J 6.84 \mathrm{~Hz}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6(\mathrm{CO})$, $167.9,155.2,142.3,134.4,123.5$ and $115.0(6 \times$ quaternary C$), 133.0$, $128.7,128.7,128.0,128.0,126.9,126.1,124.8$ and $117.6(9 \times$ aromatic $\mathrm{CH}), 129.4(\mathrm{CH}, \mathrm{C}-1), 54.9(\mathrm{CH}, \mathrm{C}-4), 50.0(\mathrm{CH}, \mathrm{C}-3 \mathrm{a}), 41.4(\mathrm{CH}$, $\mathrm{C}-5), 32.8\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 29.0\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$ and $15.4\left(\mathrm{CH}_{3}\right) ; m / z 328\left(\mathrm{M}^{+}\right.$, 100%), 313 (28) and 237 (18).

