A New Xanthone Synthesis from the Diels–Alder Reaction between 2-Vinylchromen-4-ones and Cyclopentanone Enamine

Roy M. Letcher* and Tai-Yuen Yue

Department of Chemistry, University of Hong Kong, Bonham Road, Hong Kong

The reaction between 2-vinylchromen-4-ones and 1-pyrrolidinylcyclopentene give substituted 2,3,3a,4-tetrahydrocyclopenta[*a*]xanthen-11(5*H*)-ones; the stereochemistry of the product shows that the initial step in the reaction may be considered to be an *exo*-addition Diels–Alder with inverse electron demand.

2-Styrylchromen-4-ones have been used to synthesise xanthen-9(9*H*)-ones in very low yields *via* photochemical cyclisations,¹⁻³ and *via* Diels–Alder reactions with maleic anhydride and *N*-arylmaleimides.^{4.5} These Diels–Alder reactions would appear to involve a diene and a dienophile which are both electron deficient. A more favourable reaction however would be expected between the electron deficient diene in 2-vinylchromen-4-ones and an electron rich dienophile such as an enamine.

We have now carried out such reactions by refluxing in 95% ethanol, equimolar amounts of the enamine 1-pyrrolidinylcyclopentene 1 and a variety of (*E*)-2-vinylchromen-4-ones **2a–d**. In each case a crystalline product with stoichiometric formula $(1 + 2-C_4H_9N)$ was obtained in 50–60% yield. All products exhibited very similar spectra (*e.g.* **3a**[†]) showing that they have analogous structures; all showed typical IR and UV spectra for a chromone and one alkenic hydrogen (at *ca*. δ_H 7.1) in their ¹H NMR spectra. In the case of **3a** this clearly shows that the double bond is not in the position expected from an unrearranged Diels–Alder product, and is further confirmed by the methyl group (at δ_H 1.22) appearing as a doublet (*J* 6.8 Hz). In each case, structure elucidation was accomplished using 1D and 2D NMR techniques, the results of which are discussed below for **3a**. Spectral editing of the ¹³C NMR spectra was achieved by the DEPT analysis which for the product from **1** and **2a** revealed three methines and two methylenes. The ¹H–¹³C COSY spectrum showed that the

[†] Satisfactory analytical and spectroscopic data have been obtained for all new compounds. *Selected data* **3a**: m.p. 189–191 °C; IR (Nujol) v/cm⁻¹ 1640; ¹H NMR (270 MHz, CDCl₃) δ 8.27 (dd, 1 H, *J* 7.8 and 1.3 Hz, 9-H), 7.62 (t, 1 H, *J* 7.8 Hz, ArH), 7.42–7.20 (m, 7 H, ArH), 7.11 (br s, 1 H, 1-H), 3.22 (m, 1 H, 5-H), 3.05 (m, 1 H, 3a-H), 2.45 (m, 3 H, CH₂-2 + 4-H), 1.71 (m, 1 H, 3-H_a), 1.29 (m, 1 H, 3-H_b) and 1.23 (d, 3 H, *J* 6.84 Hz, Me); ¹³C NMR (67.8 MHz, CDCl₃) δ 176.6 (CO), 167.9, 155.2, 142.3, 134.4, 123.5 and 115.0 (6 × quaternary C), 133.0, 128.7, 128.0, 126.0, 126.9, 126.1, 124.8 and 117.6 (9 × aromatic CH), 129.4 (CH, C-1), 54.9 (CH, C-4), 50.0 (CH, C-3a), 41.4 (CH, C-5), 32.8 (CH₂, C-2), 29.0 (CH₂, C-3) and 15.4 (CH₃); *m/z* 328 (M⁺, 100%), 313 (28) and 237 (18).

three methine signals, δ_c 54.9, 50.0 and 41.4, correlate with δ_H 2.44, 3.05 and 3.22, respectively; one methylene was at δ_c 32.8 $(\delta_{\rm H} 2.46)$, whilst the other $(\delta_{\rm c} 29.0)$ correlated with two well separated proton signals (δ_H 1.29 and 1.71). The ¹H-¹H COSY spectrum, aided by spin-decoupling experiments, revealed the following connections: Me (δ_H 1.23)–CH (δ_H 3.22)-CH (δ_H 2.44)-CH (δ_H 3.05)-CH₂ (δ_H 1.71 and 1.29)-CH₂ ($\delta_{\rm H}$ 2.46)-alkenic H ($\delta_{\rm H}$ 7.11). This leads unambiguously to structure 3a for the product from 2a, and using similar experiments and arguments, to 3b-d for the products from 2b-d, respectively. The stereochemistry of the cyclohexene ring was established from ¹H NMR spin-decoupling experiments. Irradiation of the methyl signal resulted in the multiplet at $\delta_{\rm H}$ 3.22 collapsing to a doublet (with J 10.7 Hz) revealing the $J_{4,5}$ coupling constant. 4-H was similarly identified (at δ 2.44) and shown to be a triplet (superimposed on the broad C-2 CH₂ group) with a coupling constant approximately equal to that of $J_{4,5}$, thus revealing $J_{3a,4}$. From the Karplus equation these coupling constants indicate a large dihedral angle, or trans-diaxial relationship for both 5-H/4-H and 4-H/3a-H. Consequently the stereochemistry of the C-ring is established with all three substituents (at C-5, C-4 and C-3a) being in the more stable equatorial position. Furthermore, the trans-stereochemistry at C-3a, C-4 is consistent with a Diels-Alder reaction having occurred via an exo-addition.

These data suggest that the formation of the xanthones 3a-d is *via* an initial Diels-Alder reaction with inverse electron demand leading to a *cis*-fused C/D ring intermediate which rearranges (1,3-hydrogen shift from C-11a to C-5) to give the

chromone ring and eliminates pyrrolidine (or water if the iminium ion had hydrolysed) by presumably a *trans*-elimination involving 1-H.

In an endeavour to test the generality of the reaction with a more sterically hindered 2-vinylchromen-4-one, 2e was treated with enamine 1. The product was found to be quite different from 3, and was shown to be 4 from an X-ray crystallographic structure elucidation,⁶ which was needed to place unambiguously the cyclopentanone substituent on the ethyl chain. Compound 4 is presumably obtained *via* a Michael addition of the enamine giving an iminium ion which is hydrolysed. The isolation of 4 suggests a possible alternative step-wise mechanism for the formation of 3.

The generality of this novel enamine-2-vinylchromen-4-one reaction is being studied.

Received, 11th May 1992; Com. 2/02422E

References

- 1 K. A. Kumar and G. Srimannarayana, *Indian J. Chem., Sect. B*, 1980, **19**, 615.
- 2 I. Yokoe, K. Higuchi, Y. Shirataki and M. Komatsu, Chem. Pharm. Bull., 1981, 29, 2670.
- 3 B. V. Maliaiah, G. L. D. Krupadanam and G. Srimannarayana, Indian J. Chem., Sec. B, 1985, 24, 862.
- 4 A. Schönberg, A. Mustafa and G. Aziz, J. Am. Chem. Soc., 1954, 76, 4576.
- 5 R. M. Letcher and T. Y. Yue, J. Chem. Res., 1992, 248.
- 6 R. M. Letcher, K. K. Cheung and T. Y. Yue, Acta Crystallogr., Sect. C., in the press.