The First Monomeric Prochiral Tin(II) Complexes Sn[N(SiMe₃)₂]X [X = $OC_6H_2Bu^t_2$ -2,6-Me-4, 1 or $NCMe_2(CH_2)_3CMe_2$, 2]; the X-Ray Structure of 1 and Oxidative Addition Reactions of 2[†]

Holger Braunschweig, Richard W. Chorley, Peter B. Hitchcock and Michael F. Lappert*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK

 $\frac{\text{Monomeric, crystalline tin(III)}}{\text{NCMe}_2(CH_2)_3} \text{CMe}_2 \text{ [NR}_2) X [X = OAr 1 \text{ or } NR'_2 2; R = SiMe_3, Ar = C_6H_2But_2-2,6-Me-4, NR'_2 = NCMe_2(CH_2)_3CMe_2] have been prepared from (a) Sn(NR_2)_2 + SnX_2, (b) [Sn(µ-CI)(NR_2)]_2 + 2LiX \text{ or } (c) Sn(NR_2)_2 + ArOH; 1 \text{ is V-shaped, } O-Sn-N 96.4(1)^\circ; 2 + A-B \text{ yields the adducts } Sn(A)(B)(NR_2)(NR'_2) [AB = (CF_3CO)_2O 3, Mel 4 \text{ or } (+)-EtCH(Me)CH_2Br 5], in the case of 5 without significant diastereoselectivity.}$

The first thermally stable, heteroleptic, two-coordinate tin(II) compounds Sn(L)L', ^{-}L and $^{-}L'$ being monohapto ligands, free from significant intermolecular association, have been obtained by three methods, Scheme 1; a single group 14 element compound of this type has recently been reported, $Ge(CR_3)(CHR_2)$ (R = SiMe₃).¹ Crystalline Sn(NR₂)(OAr) 1 is V-shaped [Fig. 1; selected X-ray data,‡ compared with those

for Sn(NR₂)₂² and Sn(OAr)₂,³ are in Table 1 (Ar = C₆H₂Bu'₂-2,6-Me-4)]. The similarly diamagnetic and coloured low melting (<30 °C) Sn(NR₂)(NR'₂) **2** presumably adopts a similar geometry; with reagents A-B it yielded the *Sn*-chiral adducts Sn(A)(B)(NR₂)(NR'₂) **3**-5 [Scheme 1: NR'₂ = $\overline{\text{NCMe}_2(CH_2)_3}$ CMe₂ and AB = (CF₃CO)₂O **3**, MeI **4** or (+)-EtCH(Me)CH₂Br **5**], for **5** without significant diastereo-selectivity.

The formation and reactivity of **1** and **2** were conveniently monitored by ¹¹⁹Sn NMR spectroscopy, Table 2. It is noteworthy that **1** at 100 °C was inert to redistributive symmetrisation (v in Scheme 1), whereas the reverse reaction of Sn(NR₂)₂ + Sn(OAr)₂ was fast at 25 °C. This is surprising because earlier attempts to make pure heteroleptic Sn^{II} compounds were unsuccessful; for example, experiments designed to yield Sn(η -C₅H₅)(NR₂) gave 2:1:1 mixtures of the compound with Sn(NR₂)₂ and Sn(η -C₅H₅)₂.⁴ Earlier literature is cited in ref. 5, which also reported the structure of Sn(NCS)(NR₂), showing significant Sn…S interactions between neighbouring molecules.

The O-Sn-N angle in 1 of 96.4(1)° is almost exactly the mean of the wider N-Sn-N' and the more acute O-Sn-O'

[†] No reprints available.

[‡] Crystal data [T 22 °C, Enraf-Nonius CAD-4 diffractometer, absorption correction, structural solution by heavy atom methods, fullmatrix least-squares refinement with non-hydrogen atoms anisotropic; H atoms fixed other than C(15) methyl H atoms which were omitted, $w = 1/\sigma^2(F)$]: 1 C₂₁H₄₁NOSi₂Sn, M = 498.4, monoclinic, space group P2₁/c (No. 14), a = 9.356(1), b = 24.826(3), c =11.367(3) Å, $\beta = 99.58(2)^\circ$, U = 2603.4 Å³, F(000) = 1040; Z = 4, D_c = 1.27 g cm⁻³; μ (Mo-K α) = 10.8 cm⁻¹, specimen 0.5 × 0.4 × 0.3 mm, 4692 unique reflections for 2 < $\theta < 25^\circ$, 3467 reflections with $|F^2| > 2\sigma(F^2)$ used in the refinement; R = 0.032, $R_w = 0.044$, S = 1.4. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

$[Sn(\mu-Cl)(NR_{2})]_{2} + 2/n [Li(\mu-X)]_{n}$ i 2ArOH + Sn(NR_{2})_{2} X = OAr 2 Sn(A)(B)(NR_{2})(NR'_{2}) + SnR'_{2} 3 A-B = CF_{3}CO-OC(O)CF_{3} 4 A-B = Me-l 5 A-B = (+)-EtCH(Me)CH_{2}-Br 2 Sn(A)(B)(NR_{2})]_{2} + SnZ_{2}

Scheme 1 R = SiMe₃, NR'₂ = NCMe₂(CH₂) CMe₂, Ar = C₆H₂Bu'₂-2,6-Me-4. *Reagents and conditions*: i, n-C₆H₁₄, 25 °C, 1 h; ii and iii, PhMe, 25 °C, $\frac{1}{2}$ h; iv, excess AB, 25 °C (for 3, n-C₆H₁₄, $\frac{1}{2}$ h; for 4, n-C₆H₁₄, $\frac{1}{2}$ h; for 5, n-C₅H₁₂ + [²H₈]toluene, 14 h, reaction monitored by ¹¹Sn NMR spectroscopy); v, PhMe, 100 °C, 1 h. *Characterisation*: the crystalline, bright yellow 1, orange 2, and yellow 3 gave satisfactory microanalyses and ¹H and ¹³C NMR spectra; for ¹¹⁹Sn data, see Table 2; for the X-ray structure of 1, see Fig. 1; 4 was identified by ¹H, ¹³C and ¹¹⁹Sn NMR spectral data; satisfactory FAB mass spectra (Nujol matrix) were recorded for 1, 2 and 4.

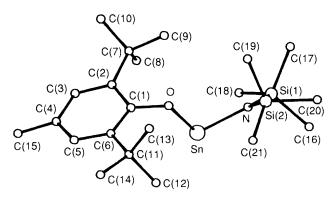
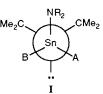


Fig. 1 The molecular structure of $Sn[N(SiMe_3)_2][OC_6H_2Bu'_2-2,6-Me-4]$ 1 and atom numbering scheme

angles in $Sn(NR_2)_2^2$ and $Sn(OAr)_2^3$ Table 1. The greater steric demand of the $-NR_2$ in relation to the -OAr ligand is also reflected in the longer Sn–O but shorter Sn–N distances in 1 in comparison with $Sn(OAr)_2$ and $Sn(NR_2)_2$, respectively, and in the smaller difference between the two Sn–N–Si angles in 1 compared with that in $Sn(NR_2)_2$ (in each case, the wider angle is on the side of the molecule *trans* to the lone pair).

The ¹¹⁹Sn NMR chemical shift for **1** is intermediate between those for $Sn(NR_2)_2$ and $Sn(OAr)_2$, Table 2. The highly deshielded value observed for **2** is characteristic of homoleptic monomeric Sn¹¹ amides (a much higher frequency δ [¹¹⁹Sn] would have been expected had **2** been a dimer in solution), as is its considerable temperature dependence (footnote *b* in Table 2). Characterisation of **2** was also achieved by identification of its oxidative adducts **3** and **4** [Scheme 1; *cf*.⁶ related reactions of Sn(NR₂)₂ and Sn(NR'₂)₂ with MeI or (CF₃CO)₂O]. ¹H and ¹³C NMR spectroscopy§ revealed that


Table 1 Comparative selected structural data for some crystalline tin(u) amides and aryloxides

	$Sn(OAr)_2$	$Sn(NR_2)_2$	Sn(NR ₂)(OAr) 1
Sn–O/Å	2.022(4) 1.995(4)	_	2.055(2)
Sn–N/Å	_	2.096(1) 2.088(6)	2.079(3)
O–C/Å	1.375(6) 1.367(6)	_	1.365(4)
⟨N–Si⟩/Å	_ ``	1.742(6)	1.733(3)
È-Sn-E'/°	88.8(2)	104.7(2)	96.4(1)
Sn-O-C/°	128.6(4) 121.8(3)	_	115.1(2)
Sn-N-Si/°		124.9(2) 113.1(2)	122.0(1) 114.7(1)
Ref.	3	2	This work

Table 2 ¹¹⁹Sn NMR chemical shifts for some tin compounds^a

Compound	δ
$\frac{1}{\mathrm{Sn}(\mathrm{OAr})_2}$	-193
$Sn(NR_2)_2$	766 (283 K)
$Sn(NR'_2)_2$	738 (283 K)
$Sn(NR_2)(OAr)$ 1	277
$Sn(NR_2)(NR'_2)$ 2	705 (283 K) ^b
$Sn(COCF_3)(NR_2)(NR_2)(OCOCF_3)$ 3	-299c
$Sn(I)(Me)(NR_2)(NR'_2)4$	-207
$Sn(Br)[(+)-CH_2CH(Me)Et](NR_2)(NR'_2)$ 5	-89.3, -89.6

^{*a*} Unless otherwise stated, data obtained at *ca*. 300 K in [²H₆]benzene or PhMe with [²H₆]benzene or [²H₈]toluene as lock solvents. ^{*b*} δ 677 (213 K), 732 (363 K). ^{*c*} Quartet, ³J(¹¹⁹Sn–¹⁹F) 46 Hz.

the magnetic equivalence of the Me groups of the $-NR'_2$ ligand in 2 is not preserved in 3 or 4. This may arise from *Sn*-chirality in the latter (*q.v.* the Newman projection I, through the Sn–N bond, assuming non-planarity at the NR'₂ nitrogen atom); alternatively, since the β -carbon atoms remain identical, restricted rotation about the Sn–NR'₂ bond in the Sn¹V adducts may be implicated.

A prochiral tin(II) complex, such as 2, is of interest because reaction with an optically active addendum A-B offers the possibility of achieving for the first time an asymmetric synthesis at a tin(IV) centre, with groups bulky enough to make it likely that the product $Sn(A)(B)(NR_2)(NR'_2)$ would be stereochemically rigid and hence inert. It had previously been shown that the addition of a bromohydrocarbon R"Br to $Sn(NR_2)_2$ is first order in each reagent $[k_1 = 6.87 \times 10^{-5} \text{ s}^{-1}]$ for $Sn(NR_2)_2$ + PhBr in C₆H₆ at 300 K], the rate-determining step being the formation of the radical pair 'Br and the pyramidal \cdot SnBr(NR₂)₂.⁶ We therefore selected as AB (+)-EtCH(Me)CH₂Br, the simplest optically active bromoalkane without chirality at C_{α} , but its reaction with 2 gave a mixture of the two diastereoisomers of 5, without significant selectivity, Table 2. The reaction, which was monitored by ¹¹⁹Sn NMR spectroscopy, was first order in Sn(NR₂)(NR'₂) with $k_1 = 5.30 \times 10^{-5} \text{ s}^{-1}$ at *ca*. 300 K.

In principle, diastereoselectivity is only achievable if (*i*) the rate of interconversion of the (*R*) and (*S*) σ -radicals $Sn(Br)(NR_2)(NR'_2)$ (*via* the energetically readily accessible planar π -radical transition state) is rapid with respect to its

[§] Selected ¹H, ¹³C and ¹⁹F NMR spectroscopic data: (at ca. 300 K in [²H₆]benzene or PhMe with [²H₆]benzene or [²H₈]toluene as lock solvents) **1**: ¹H δ 0.32 (s, 18 H, SiMe₃), 1.49 (s, 18 H, Bu'), 1.56 (s, 3 H, Me) and 7.19 (s, 2 H, C₆H₂); ¹³C δ 5.68 (q, SiMe₃), 21.47 (q, Me), 32.93 (q, CMe₃), 35.14 (s, CMe₃), 126.09, 140.59 (s, o- and p-C), 127.08 (d, m-C) and 157.41 (s, *ipso*-C). **2**: ¹H δ 0.29 (s, 18 H, SiMe₃) and 1.53 (s, 12 H, Me); ¹³C {¹H} δ 5.22 (s, SiMe₃), 18.19 (s, δ-CH₂), 36.50 (s, Me), 42.64 (s, γ-CH₂) and 59.30 (s, β-C). **3**: ¹H δ 0.28 (s, SiMe₃), 1.19 and 1.30 (s, Me); ¹³C {¹H} δ 5.16 (s, SiMe₃), 17.95 (s, δ-CH₂), 33.79, 33.93 (s, Me), 40.66 (s, γ-CH₂), 58.36 (s, β-C), 116.2 (q, COCF₃) (¹J_{C+F} 28 Hz), 116.8 (q, OCOCF₃) (¹J_{C+F} 29 Hz), ¹⁰F δ -75.48 (s) and -74.55 (s) [³J(¹⁹F-¹¹⁹Sn) 44 Hz]. 4: ¹H δ 0.33 (s, SiMe₃), 17.98 (s, δ-CH₂), 22.79 (s, SnMe), 33.81, 34.03 (s, Me), 42.20 (s, γ-CH₂), 22.79 (s, SnMe), 33.81, 34.03 (s, Me), 42.20 (s, γ-CH₂) and 58.66 (s, β-C).

combination with optically active EtCH(Me) $\dot{C}H_2$, and (*ii*) there is a clear preference for the reaction of the latter with either the (*R*) or (*S*) *Sn*-centred radical. Regarding (*ii*), further efforts will be made using a stereochemically more demanding bromoalkane. As for (*i*), we have previously studied inversion at a three-coordinate tin(π) centre of [Sn(μ -Cl)(NR'₂)]₂,⁷ and we shall seek to determine inversion barriers for tin-centred radicals.

We thank the SERC and Shell Research B.V. (Koninklijke/ Shell-Laboratorium, Amsterdam) for a studentship to R. W. C. (and Dr P. W. Lednor for his interest), Deutschen Forschungsgemeinschaft (DFG) and the Royal Society for a Fellowship to H. B., and the Leverhulme Trustees for support.

Received, 14th May 1992; Com. 2/02521C

References

- 1 P. Jutzi, A. Becker, H. G. Stammler and B. Neumann, Organometallics, 1991, 10, 1647.
- 2 T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1983, 639.
- 3 B. Çetinkaya, I. Gümrükçü, M. F. Lappert, J. L. Atwood, R. D. Rogers and M. J. Zaworotko, J. Am. Chem. Soc., 1980, **102**, 2088.
- 4 P. B. Hitchcock, H. A. Jasim, M. F. Lappert, W.-P. Leung, A. K. Rai and R. E. Taylor, *Polyhedron*, 1991, **10**, 1203.
- 5 R. W. Chorley, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Dalton Trans., 1992, 1451.
- M. F. Lappert, M. C. Misra, M. Onyszchuk, R. S. Rowe, P. P. Power and M. J. Slade, *J. Organomet. Chem.*, 1987, 330, 31.
 R. W. Chorley, P. B. Hitchcock, B. S. Jolly, M. F. Lappert and
- 7 R. W. Chorley, P. B. Hitchcock, B. S. Jolly, M. F. Lappert and G. A. Lawless, *J. Chem. Soc.*, *Chem. Commun.*, 1991, 1302; D. A. Dixon, A. J. Arduengo and M. F. Lappert, *Heteroatom Chem.*, 1991, 2, 541.