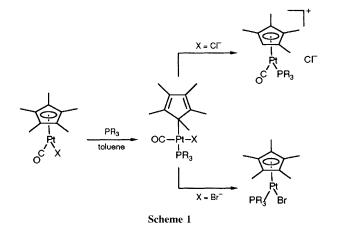
Nucleophilic Substitution of $[Pt(\eta^5-C_5Me_5)(CO)X]$ (X = Cl, Br); Isolation of a Ring-slipped Intermediate


Neil M. Boag*, Ruhksana Quyoum and K. Mohan Rao

Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, UK

The toluene mediated reaction of $[Pt(\eta^5-C_5Me_5)(CO)X]$ (X = CI, Br) with tertiary phosphines affords the unstable intermediates $[Pt(\eta^1-C_5Me_5)(CO)(PR_3)X]$ which decompose with loss of either CO or halide to give $[Pt(\eta^5-C_5Me_5)(PR_3)Br]$ or $[Pt(\eta^5-C_5Me_5)(PR_3)(CO)]^+CI^-$.

The ability of the cyclopentadienyl ligand to slip to bonding modes of lower hapticity was first proposed by Schuster-Woldan and Basolo¹ to explain the rapid second order nucleophilic substitution of $[Rh(\eta^5-C_5H_5)(CO)_2]$ by PPh₃ and has become a generally accepted mechanism for many reactions of complexes containing cyclopentadienyl rings.² Substitution of the cyclopentadienyl ring by a pentamethylcyclopentadienyl ring results in a reduction in the substitution rate owing to an increase in both the electron density at the metal and steric hindrance³ and the latter is sufficiently severe that only one example of an $\eta^{\imath}\text{-}C_5Me_5$ ligand on a transition metal has been described.^4

We have found that the reaction of $[Pt(\eta^5-C_5Me_5)(CO)X]$ (X = Cl, Br)⁵ with tertiary phosphines in non-polar solvents affords either $[Pt(\eta^5-C_5Me_5)(PR_3)Br]$ or $[Pt(\eta^5-C_5Me_5)(PR_3)(CO)]^+Cl^-$ (Scheme 1). However, if the reaction is undertaken in toluene, benzene or tetrahydrofuran (thf) an intermediate may be isolated which has been characterised as containing a ring-slipped η^1 -pentamethylcyclopentadienyl group, $[Pt(\eta^1-C_5Me_5)(CO)(PR_3)X]$.

For example, equimolar addition of PPh₂(2-MeOC₆H₄) to a toluene solution of [Pt(η^5 -C₅Me₅)(CO)Cl] at room temperature results in the rapid, quantitative formation of [Pt(η^1 -C₅Me₅)(CO){PPh₂(2-MeOC₆H₄)}Cl] **1** which was isolated as a yellow solid by rapid cooling to -78 °C.⁺ Solution infrared spectroscopy confirms the retention of the carbonyl ligand [v(CO) 2061 cm⁻¹] and the magnitude of ${}^{1}J_{Pt,P}$ (1403 Hz) suggests that the phosphine is *trans* to a σ -bound alkyl group.⁶ Confirmation of the presence of the η^1 -C₅Me₅ group came from a variable temperature ${}^{13}C{}^{1}H$ study of a sample of **1** in which the pentamethylcyclopentadienyl ring carbons had been 10% ${}^{13}C$ enriched.

At -86 °C, non-equivalence of the resonances attributable to the ring methyl carbons was detected in the expected 1:2:2 ratio for an η^1 -pentamethylcyclopentadienyl group (Fig. 1). Three other resonances which may be assigned to the ring carbons were also observed. The first at δ 64.8 exhibits a large phosphorus coupling (76 Hz) indicative of the presence of a phosphine *trans* to the C₅Me₅ group. The magnitude of this coupling and the coupling to ¹⁹⁵Pt (385 Hz) is conclusive proof for the formulation of **1** as a σ -bound C₅Me₅ complex.⁷ The other resonances at δ 144.3 and 128.0 are attributable to the two pairs of uncoordinated alkenic ring carbons.

On warming, all the resonances attributable to the pentamethylcyclopentadienyl ring broadened and collapsed. By 24 °C, the spectrum exhibited two new averaged resonances, a sharp singlet at δ 13.0 assignable to the methyl carbons and a very broad single resonance at δ 122 due to the five ring carbons. This behaviour is consistent with 1,2-intramolecular migration of the pentamethylcyclopentadienyl ligand. After several days, the cation [Pt(η^5 -C₅Me₅){PPh₂(2-MeOC₆H₄)}-(CO)]+Cl⁻ **2** precipitated quantitatively.†

Although the intermediacy of ring-slipped species is well established in substitution reactions of d^8 transition metal

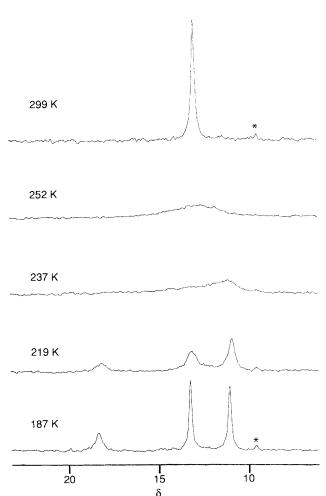


Fig. 1 Variable temperature ${}^{13}C{}^{1}H$ NMR spectrum in the methyl region of $[Pt(\eta^1-C_5Me_5){PPh_2(2-MeOC_6H_4)}(CO)Cl]$, 1, in $[{}^{2}H_8]$ thf; * indicates $[Pt(\eta^5-C_5Me_5)(CO)Cl]$ impurity

cyclopentadienyl complexes,⁸ the isolation of an η^1 intermediate would suggest that a reaction sequence involving sequential slippage, *e.g.* $\eta^5 \rightarrow \eta^3 \rightarrow \eta^1 \rightarrow \eta^3 \rightarrow \eta^5$, cannot be ignored. This is particularly true for the heavier transition metals where the square planar configuration required for an η^1 -cyclopentadienyl species is especially favoured.⁹

We thank the SERC for support (K. M. R.) and a studentship (R. Q.) and Johnson Matthey for a loan of platinum salts.

Received, 9th September 1991; Com. 1/04679I

References

- 1 H. G. Schuster-Woldan and F. Basolo, *J. Am. Chem. Soc.*, 1966, **88**, 1657; M. Cheong and F. Basolo, *Organometallics*, 1988, **7**, 2041.
- 2 S. Lee and N. J. Cooper, J. Am. Chem. Soc., 1991, 113, 716: W. D. Jones, V. L. Kuykendall and A. D. Selmeczy, Organometallics, 1991, 10, 1577.
- 3 M. E. Rerek and F. Basolo, Organometallics, 1983, 2, 372.
- 4 G. Parkin and J. E. Bercaw, J. Am. Chem. Soc., 1989, 111, 391.
- 5 Prepared from $[Pt_2(\eta^5-C_5Me_5)_2(CO)_2]$ and $[Fe(\eta^5-C_5H_5)_2]^+FeX_4^-$, N. M. Boag, *Organometallics*, 1988, **7**, 1446; N. M. Boag and R. Quyoum, unpublished results.
- 6 R. J. Cross and A. J. McLennan, J. Chem. Soc., Dalton Trans., 1983, 359.
- 7 B. E. Mann and B. E. Taylor, ¹³C NMR Data for Organometallic Compounds, Academic Press, London, 1981.
- 8 J. M. O'Connor and C. P. Casey, Chem. Rev., 1987, 87, 307.
- 9 R. J. Cross and R. Wardle, J. Chem. Soc., 1971, 2000.

⁺ Satisfactory C and H analyses were obtained for compounds **1** and **2**. Selected spectroscopic data for **1**: IR (toluene) v 2061 cm⁻¹; ³¹P{¹H} NMR (toluene) δ 12.6 (s, $J_{Pt,P}$ 1403 Hz); ¹⁹⁵Pt{¹H} NMR (toluene, Ξ = 21.4 MHz) δ 543 (d, $J_{Pt,P}$ 1403 Hz); ¹H NMR (C_6D_6) δ 3.16 (s, 3 H, MeO) and 2.13 (d, 15 H, $C_5Me_5 J_{P,H}$ 3.2 and $J_{Pt,H}$ 15.0 Hz); ¹³C{¹H} ([²H₈]thf) 299 K: 165.5 (d, CO, $J_{P,C}$ 10 Hz), 122 (v br, CMe), 55.6 (s, OMe) and 13.0 (s, Me); 187 K: 165.7 (d, CO, $J_{P,C}$ 10 and $J_{Pt,C}$ 2042 Hz), 144.3 (d, CMe, $J_{P,C}$ 5 and $J_{Pt,C}$ 25 Hz), 128.0 (d, CMe, $J_{P,C}$ 5 Hz), 64.8 (d, CMe, $J_{P,C}$ 76 and $J_{Pt,C}$ 385 Hz), 55.7 (s, MeO), 18.2 (s, Me), 13.1 (s, Me) and 10.9 (s, Me).

For **2**: IR (CH₂Cl₂) v 2062 cm⁻¹; ³¹P{¹H} NMR (CDCl₃) δ – 1.9 (s, $J_{Pt,P}$ 4147 Hz); ¹⁹⁵Pt{¹H} NMR (CDCl₃, Ξ = 21.4 MHz) δ –1306 (d, $J_{Pt,P}$ 4147 Hz); ¹H NMR (CDCl₃) δ 3.56 (s, 3 H, MeO) and 1.82 (d, 15 H, C₅Me₅ $J_{P,H}$ 2.9 and $J_{Pt,H}$ 13.4 Hz); ¹³C{¹H} (CDCl₃) 300 K: 161.4 (d, CO, $J_{P,C}$ 16 and $J_{Pt,C}$ 2205 Hz), 109.7 (s, $J_{Pt,C}$ 21 Hz), 55.4 (s, MeO) and 9.17 (s, Me).